Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Purpose: To define risk factors that predict for urinary incontinence after (125)I prostate brachytherapy.
Methods And Materials: Urinary incontinence after (125)I prostate brachytherapy was evaluated using a patient self-assessment questionnaire based on the NCI Common Toxicity Criteria (version 2). Grade 0 is defined as no incontinence; Grade 1 incontinence occurs with coughing, sneezing, or laughing; Grade 2 is spontaneous incontinence with some control; and Grade 3 is no control. One hundred fifty-three patients received monotherapy (145 Gy) (125)I implants between October 1996 and December 2001, and 112 (75%) responded to our survey. Median follow-up was 47 months (range, 14-74 months). Patient characteristics included a preimplant prostate-specific antigen < or =10, Gleason score < or =6, and stage < or =T2b. CT-based postimplant dosimetry was analyzed approximately 30 days after the procedure, and dose-volume histograms of the prostate and the prostatic urethra were generated based on contoured volumes. Dosimetric parameters evaluated as predictive factors for incontinence included the prostate volume; total activity implanted; number of needles; number of seeds; seed activity; urethral D(5), D(10), D(25), D(50), D(75), and D(90) doses; prostate D(90) doses; and prostate V(100), V(200), and V(300). Clinical parameters evaluated included age, Gleason score, prostate-specific antigen, preimplant International Prostate Symptom Score (I-PSS), and length of follow-up.
Results: Urethral D(10) dose and preimplant I-PSS predicted for urinary incontinence on multivariate analysis (p = 0.002 and p = 0.003, respectively). Twenty-eight patients reported Grade 1 incontinence (26%), and 5 patients reported Grade 2 (5%). Patients with Grade 1 and 2 incontinence were analyzed together, because of the small number of patients who experienced Grade 2. No patients reported Grade 3 incontinence. Mean urethral D(10) was 314 +/- 78 Gy in patients with Grade 0 compared with 394 +/- 147 Gy in patients with Grades 1, 2 incontinence (p = 0.002). The incidence of incontinence doubled as the urethral D(10) dose increased above 450 Gy. Patients with Grade 0 had a mean preimplant I-PSS score of 6.6 +/- 4.5 compared with 10.0 +/- 6.4 for Grades 1, 2 (p = 0.003). A significant increase in the incidence of incontinence was noted when the preimplant I-PSS was greater than 15. No relationship was noted between incontinence and prostate volume, total activity implanted, or the number of needles used (p = 0.83, p = 0.89, p = 0.36, respectively).
Conclusion: Urethral D(10) dose and preimplant I-PSS are predictive for patients at higher risk of urinary incontinence. To decrease the risk of this complication, an effort should be made to keep the urethral D(10) dose as close to the prescribed dose as possible, and the preimplant I-PSS should be thoroughly evaluated in an attempt to select patients with scores less than 15.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijrobp.2004.01.050 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!