AI Article Synopsis

Article Abstract

The influence of long-term acclimation temperatures in Atlantic cod (Gadus morhua) was studied by growth experiments carried out over a total of 272 individuals. The attention focused on the structural and functional modulation of the five electrophoretically distinguishable genotypes of cod hemoglobin (HbI*1/1, HbI*1/2, HbI*2/2, HbI*1/2b, and HbI*2/2b) and on the correlation with body length/weight. The main results can be summarized as follows. (1) Acclimation to lower (4 and 8 degrees C) and higher (12 and 15 degrees C) temperatures favors the expression of, respectively, more anodic and more cathodic hemoglobin components. (2) The optimal O(2) transporting features are observed at 12 degrees C, as well as a saturation-dependent temperature dependence of O(2) binding, which furthermore is strongly dependent upon the acclimation background. (3) The optimal growth condition for the three main genotypes (HbI*1/1, HbI*1/2, and HbI*2/2) is associated with T=12 degrees C. The overall results are consistent with the idea that environmental temperatures constitute a primary factor in the aggregation of individuals physiologically more than genetically homogeneous. This is fully confirmed by careful statistical analysis carried out over a subset of individuals for which the full set of structural (isoelectric focusing), functional (O(2) binding), and growth data was available.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpb.2004.04.004DOI Listing

Publication Analysis

Top Keywords

atlantic cod
8
cod gadus
8
gadus morhua
8
hemoglobin components
8
hbi*1/1 hbi*1/2
8
hbi*1/2 hbi*2/2
8
temperature acclimation
4
acclimation modulates
4
modulates oxygen
4
oxygen binding
4

Similar Publications

More than 27,000 stomachs from 70 species of fish were collected from the Barents Sea in 2015. Quantitative stomach content expressed relative to the body weight of the predator fish (g g as %) varied by four to five orders of magnitude for six species with the largest sample size (Atlantic cod Gadus morhua, haddock Melanogrammus aeglefinus, Greenland halibut Reinhardtius hippoglossoides, long rough dab Hippoglossoides platessoides, polar cod Boreogadus saida, and Atlantic capelin Mallotus villosus). The quantitative stomach contents of individual fish followed a common and strict statistical relationship for predator species or groups of species (by families), and for prey categories across predator species.

View Article and Find Full Text PDF

Increased industrial offshore activities in northern waters raise the question of impact of polycyclic aromatic hydrocarbons (PAHs) on key Arctic marine species. One of these is the ecologically important polar cod (Boreogadus saida), which is the primary food source for Arctic marine mammals and seabirds. In the present work, we have conducted the first comprehensive proteomics study with this species by exploring the effects of dietary PAH exposure on the hepatic proteome, using benzo[a]pyrene (BaP) as a PAH model-compound.

View Article and Find Full Text PDF

When haemoglobin genotyping was implemented in the early 1960s to investigate population genetic structure in Atlantic cod (), it became one of the first molecular genetic markers deployed in fisheries research worldwide. However, its suitability was questioned due to its potential for selection. While the issue of neutrality concerned the first population geneticists, markers under selection are now routinely used to study population genetic structure.

View Article and Find Full Text PDF

Atlantic cod farming experiences renewed growth in Norway, and increased awareness is essential to address emerging diseases in this species. There are few reports on gill diseases in cod, and to date, no viral gill infections of cod have been documented. In this study, we collected samples from three sequential time points in summer 2023 from farmed cod suffering from cardiorespiratory disease.

View Article and Find Full Text PDF

The overall aim of the present study was to determine if exposure to three high volume plastic additives, including diethylhexyl phthalate (DEHP), bisphenol A (BPA) and benzotriazoles (BT), have the potential to promote adverse effects in Atlantic cod (G. morhua). Ex vivo precision cut - liver slices (PCLS) from six male juvenile Atlantic cod were exposed to four concentrations of mono-(2-ethylhexyl)-phthalate (MEHP, the main metabolite of DEHP), BPA and BT both singly and in mixtures ranging from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!