Poly(butylcyanoacrylate) nanoparticles were prepared by dispersion polymerization (DP) and emulsion polymerization (EP) of n-butyl cyanoacrylate monomer. The particles were characterized by infrared spectroscopy, differential scanning calorimetry, X-ray diffractometry and transmission electron microscopy. Particle properties such as size and zeta potential were determined for nanoparticles prepared by DP and EP techniques and compared. EP technique resulted in a low particle size compared to the DP. A high zeta potential was observed for nanoparticles prepared by the DP method. Incorporation of methotrexate resulted in a decrease in zeta potential in both types of nanoparticles, the decrease being greater in DP nanoparticles. Effect of experimental variables such as monomer concentration, polymerization time and temperature on drug entrapment and particle size was studied. Both types of nanoparticles showed an increase in drug entrapment with increased monomer concentrations. Variable polymerization time did not influence the drug entrapment of EP nanoparticles. Polymerization at 60 +/- 2 degrees C resulted in a decrease of drug entrapment and a great increase in the particle size of both types of nanoparticles. In vitro drug release studies showed a comparatively high release of methotrexate from DP nanoparticles suggesting the channelizing effect of dextran chains incorporated into nanoparticles during polymerization. Though the release profiles of nanoparticles appeared similar, a significant difference in release rates was found for DP and EP nanoparticles in 0.1 mol L(-1) HCl and pH 7.4 phosphate buffer (p < 0.01). Drug release data indicate that the release of methotrexate from DP and EP nanoparticles followed Fickian diffusion in 0.1 mol L(-1) HCl, while the mechanism was found anomalous in pH 7.4 phosphate buffer. An effort was also made to critically correlate the properties of nanoparticles synthesized by the above two techniques, and emphasize the importance of these characteristics in targeted drug delivery.

Download full-text PDF

Source

Publication Analysis

Top Keywords

drug entrapment
16
nanoparticles
15
nanoparticles prepared
12
zeta potential
12
particle size
12
types nanoparticles
12
experimental variables
8
particle properties
8
polybutylcyanoacrylate nanoparticles
8
polymerization time
8

Similar Publications

In treating type 2 diabetes, avoiding glucose reabsorption (glucotoxicity) and managing hyperglycemia are also important. A metabolic condition known as diabetes (type-2) is characterized by high blood sugar levels in comparison to normal Bilosomes (BLs) containing Dapagliflozin (Dapa) were formulated, optimized, and tested for oral therapeutic efficacy in the current investigation. Used the Box Behnken design to optimize the Dapa-BLs, formulated via a thin-film hydration technique.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on using magnetic nanoparticles (MNP) combined with chitosan to improve targeted drug delivery for breast cancer treatment, aiming for better efficacy and fewer side effects.
  • MNPs were created through a co-precipitation method, and then encapsulated with the anti-cancer drug 5-fluorouracil (5-FU) in chitosan beads, followed by a variety of characterization techniques to confirm their properties.
  • Results indicated a high entrapment efficiency of 85-90% and notable cytotoxic effects on breast cancer cells, with drug release varying under different pH levels, suggesting a promising strategy for targeted cancer therapy.
View Article and Find Full Text PDF

: We developed delafloxacin (Dela)-loaded PLGA nanoparticles (PNPs) for potential ocular application a topical route to treat eye infections caused by Gram-positive and Gram-negative bacteria. : Dela-PNPs were formulated using the emulsification-solvent evaporation method and stabilized using poly(vinyl alcohol) (PVA). Size and morphology were characterized by using dynamic light scattering (DLS) and scanning electron microscopy (SEM).

View Article and Find Full Text PDF

Aminoglycoside/Hexadecanoic Acid Complex Lamellar Core Nanoparticles.

ACS Omega

December 2024

Department of Clinical Medicine, Macquarie University, Sydney, NSW 2109, Australia.

An aminoglycoside, tobramycin sulfate (TbS), was complexed with hexadecanoic acid (HdA), resulting in a TbS/HdA complex with a repeat unit of 5.3 nm of a lamellar nanostructure. The nanometer-sized TbS/HdA particles were produced using poloxamer 188 as a dispersing agent.

View Article and Find Full Text PDF

Curcumin (Cur) is a great candidate for antioxidant applications; however, due to its low solubility and poor bioavailability, it remains only hardly employed as a therapeutic agent. Moreover, curcumin is very unstable and tends to degrade quickly. Metal-organic frameworks (MOFs) have gained great attention in the field of drug loading due to their diversity and tunability, so they are seen as great candidates for hosting curcumin.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!