The effect of the anionic surfactant SDS (sodium dodecyl sulfate) on the adsorption behavior of cationic hydroxyethyl cellulose (Polymer JR-400) and hydrophobically modified cationic cellulose (Quatrisoft LM-200) at hydrophobized silica has been investigated by null ellipsometry and compared with the previous data for adsorption onto hydrophilic silica surfaces. The adsorbed amount of LM-200 is found to be considerably larger than the adsorbed amount of JR-400 at both surfaces. Both polymers had higher affinity toward hydrophobized silica than to silica. The effect of SDS on polymer adsorption was studied under two different conditions: adsorption of polymer/SDS complexes from premixed solutions and addition of SDS to preadsorbed polymer layers. Association of the surfactant to the polymer seems to control the interfacial behavior, which depends on the surfactant concentration. For the JR-400/SDS complex, the adsorbed amount on hydrophobized silica started to increase progressively from much lower SDS concentrations, while the adsorbed amount on silica increased sharply only slightly below the phase separation region. For the LM-200/SDS complex, the adsorbed amounts increased progressively from very low SDS concentrations at both surfaces, and no large difference in the adsorption behavior was observed between two surfaces below the phase separation region. The complex desorbed from the surface at high SDS concentrations above the critical micelle concentration. The reversibility of the adsorption of polymer/SDS complexes upon rinsing was also investigated. When the premixed polymer/SDS solutions at high SDS concentrations (>5 mM) were diluted by adding water, the adsorbed amount increased due to the precipitation of the complex. The effect of the rinsing process on the adsorbed layer was determined by the hydrophobicity of the polymer and the surface.

Download full-text PDF

Source
http://dx.doi.org/10.1021/la049922wDOI Listing

Publication Analysis

Top Keywords

adsorbed amount
20
hydrophobized silica
16
sds concentrations
16
cationic cellulose
8
silica surfaces
8
adsorption behavior
8
adsorption polymer/sds
8
polymer/sds complexes
8
complex adsorbed
8
phase separation
8

Similar Publications

Starch is one of the most abundant polysaccharides in nature and has a high potential for application in several fields, including effluent treatment as an adsorbent. Starch has a unique structure, with zones of different crystallinity and a glycosidic structure containing hydroxyl groups. This configuration allows a wide range of interactions with pollutants of different degrees of hydrophilicity, which includes from hydrogen bonding to hydrophobic interactions.

View Article and Find Full Text PDF

Effective removal of rhodamine B dyestuff using colemanite as an adsorbent: Isotherm, kinetic, thermodynamic analysis and mechanism.

Heliyon

January 2025

Alanya Alaaddin Keykubat University, Rafet Kayis Engineering Faculty, Department of Engineering Basic Science, 07450, Alanya, Antalya, Turkiye.

Removal of Rhodamine B (RhB) from aqueous solutions was performed by the batch adsorption process. Colemanite was characterized as an adsorbent by Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD) and X-Ray Fluorescence (XRF). The effects of contact time, the effect of the initial concentration of the dye, the amount of adsorbent and temperature parameters on the removal of RhB were investigated.

View Article and Find Full Text PDF

Acyl-anchored metal-organic cages with interior cryptand-like recognition sites for selective removal of radioactive strontium(II).

Sci Bull (Beijing)

December 2024

Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China. Electronic address:

Tailored design of organic linkers or metal nodes can introduce desirable functionalities into metal-organic cages (MOCs), significantly expanding their potential applications. In this study, we present a viable approach for engineering acyl-type metal nodes to create interior oxygen-rich sites within MOCs, enabling specific recognition of metal ions, including radioactive contaminants, while maintaining the structural integrity of the MOCs. A novel MOC featuring a uranyl-sealed calix[4]resorcinarene (C[4]R)-based multisite cavity, referred to as UOC, is synthesized as a prototype.

View Article and Find Full Text PDF

Interactions between manganese dioxides (MnO) and dissolved organic matter (DOM) have long been the subject of scientific inquiry. However, the effect of MnO crystallinity on the DOM fate remains unclear. Herein, we comprehensively investigate the adsorption, protection, and mineralization of DOM by MnO with various crystallinities (order of crystallinity: γ-30 < γ-90 < γ-120).

View Article and Find Full Text PDF

In the waste oil recycling industry, large amounts of oil-containing sludge are still generated, thus posing a resource depletion issue when disposed of or incinerated without energy recovery or residual oil utilization. In this work, chemical activation experiments using phosphoric acid (HPO) were performed at a low temperature (600 °C) for 30 min to produce porous carbon products. From the results of the pore property analysis, an increasing trend with an increasing impregnation ratio from 0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!