Partial suppressive effect of melatonin on indomethacin-induced renal injury in rat.

Indian J Exp Biol

Department of Zoology, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.

Published: January 2004

Intramuscular injection of a single high dose of indomethacin (20 mg/kg) in fasted rats produced renal injury. The results showed increases in the level of lipid peroxidation and cholesterol, and activity of acid phosphatase and alkaline phosphatase in the kidney. Also, the renal contents of both reduced glutathione and activity of total adenosine triphosphatase were decreased by the toxicant. In serum, indomethacin increased activity of lactate dehydrogenase and acid phosphatase, and levels of creatinine and inorganic phosphorus. Paradoxically, administration of melatonin (0.75 mg/rat/day) alone for 7 days decreased significantly the activity of lipid peroxidation and acid phosphatase, and increased, but not significantly, the level of reduced glutathione in the kidney. Also, serum level of creatinine tended to decrease, but not significantly. Pretreatment with melatonin prevented the increase by subsequently administered indomethacin in the renal activity of lipid peroxidation and acid phosphatase. However, this pretreatment regimen partially suppressed the adverse changes in the remaining analyzed cytotoxic parameters induced by indomethacin in both serum and kidney. These results indicate that oral administration of melatonin at a low dose level exerted moderate antioxidant action, thereby it protected against some of the renal detrimental effects produced by indomethacin.

Download full-text PDF

Source

Publication Analysis

Top Keywords

acid phosphatase
16
lipid peroxidation
12
renal injury
8
reduced glutathione
8
administration melatonin
8
activity lipid
8
peroxidation acid
8
renal
5
indomethacin
5
activity
5

Similar Publications

Functional differences between rodent and human PD-1 linked to evolutionary divergence.

Sci Immunol

January 2025

Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, CA 92093, USA.

Mechanistic understanding of the inhibitory immunoreceptor PD-1 is largely based on mouse models, but human and mouse PD-1 share only 59.6% amino acid identity. Here, we found that human PD-1 is more inhibitory than mouse PD-1, owing to stronger interactions with the ligands PD-L1 and PD-L2 and more efficient recruitment of the effector phosphatase Shp2.

View Article and Find Full Text PDF

Clove oil obtained from Syzygium aromaticum (L.) is traditionally employed to treat inflammation associated with rheumatism, gastric disorders, and as an analgesic. Chemo-herbal combinations are known to have potent anti-inflammatory and analgesic effects, while mitigating the drug related side effects.

View Article and Find Full Text PDF

Salivary microbiota dysbiosis and elevated polyamine levels contribute to the severity of periodontal disease.

BMC Oral Health

January 2025

Department of Life Sciences, GITAM (Deemed to be University), GITAM School of Science, Visakhapatnam, Andhra Pradesh, 530 045, India.

Background: The oral cavity is a complex environment which harbours the second largest and most diverse microflora after the gastrointestinal tract. The bacteriome in the oral cavity plays a pivotal role in promoting the health and well-being of human beings. Gingivitis, an inflammation of the gingival tissue, arises due to plaque accumulation on the teeth, often leads to periodontitis.

View Article and Find Full Text PDF

The point of our study was to examine the interaction of ammonia-N poisoning and salinity on serum enzymes and oxidative stress factors of blood and liver in Nile tilapia (Oreochromis niloticus). The 50% lethal concentration (LC) in 96 h was 0.86 mg/L of ammonia-N.

View Article and Find Full Text PDF

Poly(ionic liquid)-regulated green one-pot synthesis of Au@Pt porous nanospheres for the smart detection of acid phosphatase and organophosphorus inhibitor.

Talanta

January 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Engineering Research Center of Technical Textiles, Ministry of Education, College of Materials Science and Engineering, College of Science in Donghua University, State Key Laboratory of Polyolefins and Catalysis, Shanghai Key Laboratory of Catalysis Technology for Polyolefins (Shanghai Research Institute of Chemical Industry Co., Ltd., Shanghai), Key Laboratory of High Performance Fibers & Products, PR China. Electronic address:

Here, a green poly(ionic liquid)-regulated one-pot method is developed for the synthesis of Au@Pt core-shell nanospheres (PNSs) under mild reaction conditions in water. It is found that the poly(ionic liquid) poly[1-methyl-3-butyl (3-hydroxy) imidazole] chloride (PIL-Cl) is very vital to guide the construction of Au@Pt PNSs. The as-obtained Au@Pt-1 PNSs have perfect spherical outlines, porous core-shell structures and large specific surface area by which they exhibit excellent peroxidase-like activity in acidic media and can be used to develop a simple and reliable colorimetric sensing platform.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!