From previous preclinical findings continuous low dose (metronomic) chemotherapy is thought to inhibit tumor angiogenesis. This suggests that activated endothelial cells may be more sensitive to chemotherapeutic drugs than tumor cells. Therefore, we assessed the IC50 for several relevant chemotherapeutic drugs in different endothelial and tumor cell lines to identify optimal compounds to be used for metronomic therapy in a murine renal cell carcinoma model. Adriamycin, idarubicin, 5-fluorouracil, paclitaxel and etoposide were chosen for our studies because of their oral availability in patients or previous reports on metronomic potential. IC50s were determined by BrdU cell growth assay after short time as well as long term exposure of the following cell lines: human endothelial cells (HdmVEC/HUVEC), human breast cancer (Mcf-7), melanoma (Skmel), liver cancer (Huh7/Alexander), lung cancer (A549/LXFL), colon cancer (Dld) and murine renal cell carcinoma (RENCA). In addition, FACS analysis was performed to determine the effect on cell cycle. In vivo, doses of 2x12 mg/kg, 2x1.2 mg/kg and 10x0.24 mg/kg adriamycin were applied to 12 RENCA mice each and antitumor as well as antiangiogenic effects were assessed 21 days after tumor cell application. Independent of the exposure time, all chemotherapeutic drugs were more active against the endothelial cell lines. IC50s were significantly lower in endothelial cells (4.02E-06 to 6.16E-14 M) as compared to tumor cells (7.44E-02 to 1.9E-11 M). Cell cycle analysis of all chemotherapeutic drugs revealed a G1-arrest in endothelial cells. Adriamycin applied in metronomic doses of 10x0.24 mg/kg showed significant antiangiogenic activity whereas, in contrast, the application of 2x12 mg/kg significantly increased the vessel density in primary tumors. In summary, all chemotherapeutic agents were more active against endothelial cells in comparison to tumor cells. The hypothesis of an antiangiogenic active metronomic therapy could be confirmed in vivo by the use of adriamycin in RENCA.
Download full-text PDF |
Source |
---|
BMC Med Genomics
January 2025
Department of Oncology, The First People's Hospital of Yibin, No.65, Wenxing Street, Cuiping District, Yibin, 644000, China.
Background: Advanced gastric cancer (GC) exhibits a high recurrence rate and a dismal prognosis. Myocyte enhancer factor 2c (MEF2C) was found to contribute to the development of various types of cancer. Therefore, our aim is to develop a prognostic model that predicts the prognosis of GC patients and initially explore the role of MEF2C in immunotherapy for GC.
View Article and Find Full Text PDFBMC Cancer
January 2025
The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, 730030, China.
Background: Chemotherapy-induced nausea and/or vomiting (CINV) is an intractable adverse effect of anticancer drugs. Although prophylactic use of fosaprepitant may be effective in reducing CINV, there is a lack of studies evaluating the application of fosaprepitant in real world.
Aims And Methods: This study prospectively observed the effectiveness and safety for the prophylaxis of CINV in a real-world clinical setting.
Adv Biol Regul
December 2024
Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy.
TP53 is normally a tumor suppressor. However, it is mutated in at least 50% of human cancers. Usually, we assume that mutation of the TP53 is associated with loss of sensitivity to various drugs as in most cases wild type (WT) TP53 activity is lost.
View Article and Find Full Text PDFNanoscale
January 2025
Department of Chemistry, Indian Institute of Technology Palakkad, Palakkad, Kerala 678 557, India.
Chemotherapy is a crucial cancer treatment, but its effectiveness requires precise monitoring of drug concentrations in patients. This study introduces an innovative electrochemical strip sensor design to detect and continuously monitor methotrexate (MTX), a key chemotherapeutic drug. The sensor is crafted through an eco-friendly synthesis process that produces porous reduced graphene oxide (PrGO), which is then integrated with gold nanocomposites and polypyrrole (PPy) to boost the performance of a screen-printed carbon electrode (SPCE).
View Article and Find Full Text PDFAAPS PharmSciTech
January 2025
Department of Pharmaceutical Sciences and Technology, Maharaja Ranjit Singh Punjab Technical University, Bathinda, 151001, India.
The prevalence and death due to cancer have been rising over the past few decades, and eliminating tumour cells without sacrificing healthy cells remains a difficult task. Due to the low specificity and solubility of drug molecules, patients often require high dosages to achieve the desired therapeutic effects. Silica nanoparticles (SiNPs) can effectively deliver therapeutic agents to targeted sites in the body, addressing these challenges.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!