The pathophysiological mechanisms, as well as the molecular loci of antidepressant drug action have not yet been established, but recent models proposed that several adaptive mechanisms in signal transduction cascades beyond the receptor and reuptake systems are involved in antidepressant action and play an important role in the etiology of affective disorders. In this context, the dysbindin gene (dystrobrevin-binding-protein 1, DTNBP1), which was recently reported to be associated with schizophrenia seems to be an interesting candidate gene for affective disorders. Dysbindin is widely expressed in the human brain and binds to the dystrophin-associated protein complex (DPC) which appears to be involved in signal transduction pathways, which have been repeatedly investigated and described as altered or disturbed in affective disorders [McLeod et al. [2003: Psychopharmacol Bull 35:24-41]; Brambilla et al. [2003: Mol Psychiatry 8:721-737]]. Therefore, we investigated whether five SNPs in the dysbindin gene could be susceptibility factors in the ethiology of major depression or for the response to antidepressant treatment in a sample of 293 patients compared to 220 healthy controls. Applying single SNP evaluation, as well as haplotype analysis we could not detect an association between the dysbindin polymorphisms and major depression or the response to antidepressant treatment. In conclusion, our results suggest that SNPs in the dysbindin gene are unlikely to play a major role in the pathophysiology of major depression or are in linkage disequilibrium (LD) with a neighboring mutation or gene. Further analysis are needed to confirm these results.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/ajmg.b.30064 | DOI Listing |
Int J Mol Sci
November 2024
Department of Psychology, Binghampton University-State University of New York, Binghampton, NY 13902, USA.
Elevated risk for schizophrenia is associated with a variation in the gene encoding dysbindin-1, which may underpin cognitive impairments in this prevalent neuropsychiatric disorder. The cognitive symptoms of schizophrenia involve anomalies in glutamate and dopamine signaling, particularly within the prefrontal cortex (PFC). Indeed, mice with mutations exhibit spatial and working memory deficits that are associated with deficits in glutamate release and NMDA receptor function as determined by slice electrophysiology.
View Article and Find Full Text PDFSci Rep
July 2024
Douglas Hospital Research Centre, Douglas Mental Health University Institute, 6875 LaSalle Boulevard, Montreal, QC, H4H 1R3, Canada.
Dysbindin-1, a protein encoded by the schizophrenia susceptibility gene DTNBP1, is reduced in the hippocampus of schizophrenia patients. It is expressed in various cellular populations of the brain and implicated in dopaminergic and glutamatergic transmission. To investigate the impact of reduced dysbindin-1 in excitatory cells on hippocampal-associated behaviors and synaptic transmission, we developed a conditional knockout mouse model with deletion of dysbindin-1 gene in CaMKIIα expressing cells.
View Article and Find Full Text PDFMol Psychiatry
September 2024
Department of Biomedical and Biotechnological Sciences, University of Catania, 95123, Catania, Italy.
Cognitive dysfunctions are core-enduring symptoms of schizophrenia, with important sex-related differences. Genetic variants of the DTBPN1 gene associated with reduced dysbindin-1 protein (Dys) expression negatively impact cognitive functions in schizophrenia through a functional epistatic interaction with Catechol-O-methyltransferase (COMT). Dys is involved in the trafficking of dopaminergic receptors, crucial for prefrontal cortex (PFC) signaling regulation.
View Article and Find Full Text PDFOphthalmic Genet
June 2024
Department of Ophthalmology, Centro Hospitalar Universitário de São João, Porto, Portugal.
Int J Mol Sci
July 2023
Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!