Multiplexing using synchrony in the zebrafish olfactory bulb.

Nat Neurosci

Max-Planck-Institute for Medical Research, Department of Biomedical Optics, Jahnstr. 29, 69120 Heidelberg, Germany.

Published: August 2004

In the olfactory bulb (OB) of zebrafish and other species, odors evoke fast oscillatory population activity and specific firing rate patterns across mitral cells (MCs). This activity evolves over a few hundred milliseconds from the onset of the odor stimulus. Action potentials of odor-specific MC subsets phase-lock to the oscillation, defining small and distributed ensembles within the MC population output. We found that oscillatory field potentials in the zebrafish OB propagate across the OB in waves. Phase-locked MC action potentials, however, were synchronized without a time lag. Firing rate patterns across MCs analyzed with low temporal resolution were informative about odor identity. When the sensitivity for phase-locked spiking was increased, activity patterns became progressively more informative about odor category. Hence, information about complementary stimulus features is conveyed simultaneously by the same population of neurons and can be retrieved selectively by biologically plausible mechanisms, indicating that seemingly alternative coding strategies operating on different time scales may coexist.

Download full-text PDF

Source
http://dx.doi.org/10.1038/nn1292DOI Listing

Publication Analysis

Top Keywords

olfactory bulb
8
firing rate
8
rate patterns
8
action potentials
8
informative odor
8
multiplexing synchrony
4
synchrony zebrafish
4
zebrafish olfactory
4
bulb olfactory
4
bulb zebrafish
4

Similar Publications

Inducing multiple neurobehavioural and neurochemical deficits, olfactory bulbectomy (OBX) has been developed as a rodent model of depression with potential for antidepressant drug screening. However, the generality of this model in other vertebrate taxa remains poorly understood. A small freshwater teleost fish, the zebrafish (Danio rerio), is rapidly becoming a common model species in neuroscience research.

View Article and Find Full Text PDF

Alprazolam (Alp), a triazolobenzodiazepine, is widely prescribed for the treatment of sleep disorders, anxiety, and panic disorder. While oral administration remains the standard route, its slow onset of action has prompted interest in intranasal delivery as an alternative, offers the potential for direct drug delivery to the brain. This study aims to develop a fast-acting intranasal formulation of Alp (Alp-nd).

View Article and Find Full Text PDF

Olfactory ensheathing cell (OEC) transplantation demonstrates promising therapeutic results in neurological disorders, such as spinal cord injury. The emerging cell-free secretome therapy compensates for the limitations of cell transplantation, such as low cell survival rates. However, the therapeutic benefits of the human OEC secretome remain unclear.

View Article and Find Full Text PDF

Linking Adult Olfactory Neurogenesis to Social Reproductive Stimuli: Mechanisms and Functions.

Int J Mol Sci

December 2024

Department of Life Sciences and Systems Biology, University of Turin, Via Accademia Albertina 13, 10123 Turin, Italy.

Over the last three decades, adult neurogenesis in mammals has been a central focus of neurobiological research, providing insights into brain plasticity and function. However, interest in this field has recently waned due to challenges in translating findings into regenerative applications and the ongoing debate about the persistence of this phenomenon in the adult human brain. Despite these hurdles, significant progress has been made in understanding how adult neurogenesis plays a critical role in the adaptation of brain circuits to environmental stimuli regulating key brain functions.

View Article and Find Full Text PDF

Although animals can reliably locate and recognize odorants embedded in complex environments, the neural circuits for accomplishing these tasks remain incompletely understood. Adaptation is likely to be important as it could allow neurons in a brain area to adjust to the broader sensory environment. Adaptive processes must be flexible enough to allow the brain to make dynamic adjustments, while maintaining sufficient stability so that organisms do not forget important olfactory associations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!