Aim: To estimate the selectivity of action of cobalt complexes on tumor tissue.
Materials And Methods: Cobalt(III) complexes containing both the tetradentate Schiff-base ligand derived from acetylacetone and ethylenediamine, and compounds of the vitamin PP series or their synthetic analogs, viz. nicotinamide, isonicotinamide or nicotinic acid, as extra (axial) ligands, were tested in vivo on transplanted mice tumors, namely Lewis lung carcinoma (3LL), melanoma B16, and mammary adenocarcinoma Ca755. concentrations of malondialdehyde in tissue extracts were measured by standard biochemical methods. The rate of DNA unwinding was used to detect DNA damage in tumor cells. Level of tumor hypoxia as well as bioenergetic status were estimated using 31P NMR spectroscopy in perchloric acid extracts of tissue.
Results: A significant and selective increase of malondialdehyde in tumor tissue reflecting activation of lipid peroxidation was found after administration of the complexes. The bioenergetic status in tumor was also selectively affected by the complexes: minimization of signals of high-energy phosphates was observed two hours after injection of the complexes. An increase of the number of DNA single-strand breaks was registered in tumor tissue, supporting the suggestion that the complexes may directly affect DNA. A correlation between the above tumor effects and the structure of axial ligands was demonstrated.
Conclusion: Cobalt(III) complexes affect tumor tissue with a very high level of selectivity; in particular they activate lipid peroxidation, induce DNA single-strand breaks, suppress the bioenergetic status, and enhance hypoxia. It is supposed that the selective action of these complexes on tumor tissue is due to peculiarities of tumor microphysiology, in particular significant tumor hypoxia.
Download full-text PDF |
Source |
---|
Radiat Oncol
January 2025
German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ), Heidelberg, Germany.
Background: For radiotherapy of head and neck cancer (HNC) magnetic resonance imaging (MRI) plays a pivotal role due to its high soft tissue contrast. Moreover, it offers the potential to acquire functional information through diffusion weighted imaging (DWI) with the potential to personalize treatment. The aim of this study was to acquire repetitive DWI during the course of online adaptive radiotherapy on an 1.
View Article and Find Full Text PDFRadiat Oncol
January 2025
ISTCT UMR 6030-CNRS, Université de Caen-Normandie, Caen, France.
Background: Radiotherapy as a complement or an alternative to neurosurgery has a central role in the treatment of skull base grade I-II meningiomas. Radiotherapy techniques have improved considerably over the last two decades, becoming more effective and sparing more and more the healthy tissue surrounding the tumour. Currently, hypo-fractionated stereotactic radiotherapy (SRT) for small tumours and normo-fractionated intensity-modulated radiotherapy (IMRT) or proton-therapy (PT) for larger tumours are the most widely used techniques.
View Article and Find Full Text PDFJ Exp Clin Cancer Res
January 2025
Department of General Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China.
Background: Colorectal cancer (CRC) has high incidence and mortality rates, with severe prognoses during invasion and metastasis stages. Despite advancements in diagnostic and therapeutic technologies, the impact of the tumour microenvironment, particularly extracellular matrix (ECM) stiffness, on CRC progression and metastasis is not fully understood.
Methods: This study included 107 CRC patients.
Ann Clin Microbiol Antimicrob
January 2025
Department of Science and Environment, Roskilde University, Roskilde, Denmark.
Background: Highly frequent colorectal cancer (CRC) is predicted to have 3.2 million novel cases by 2040. Tumor microenvironment (TME) bacteriome and metabolites are proposed to be involved in CRC development.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Laboratory of Veterinary Clinical Pharmacology, College of Veterinary Medicine, Inner Mongolia Agricultural University, No. 306, Zhaowuda Road, Hohhot, 010018, China.
Wound healing is a highly coordinated process driven by intricate molecular signaling and dynamic interactions between diverse cell types. Nod-like receptor pyrin domain-containing protein 3 (NLRP3) has been implicated in the regulation of inflammation and tissue repair; however, its specific role in skin wound healing remains unclear. This study highlights the pivotal role of NLRP3 in effective skin wound healing, as demonstrated by delayed wound closure and altered cellular and molecular responses in NLRP3-deficient (NLRP3) mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!