A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvno518j32f0o42atfqmkfgnqh3toq8o1): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 197

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3145
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Functional analysis of mRNA scavenger decapping enzymes. | LitMetric

Functional analysis of mRNA scavenger decapping enzymes.

RNA

Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA.

Published: September 2004

Eukaryotic cells primarily utilize exoribonucleases and decapping enzymes to degrade their mRNA. Two major decapping enzymes have been identified. The hDcp2 protein catalyzes hydrolysis of the 5' cap linked to an RNA moiety, whereas the scavenger decapping enzyme, DcpS, functions on a cap structure lacking the RNA moiety. DcpS is a member of the histidine triad (HIT) family of hydrolases and catalyzes the cleavage of m7GpppN. HIT proteins are homodimeric and contain two conserved 100-amino-acid HIT fold domains with independent active sites that are each sufficient to bind and hydrolyze cognate substrates. We carried out a functional characterization of the DcpS enzyme and demonstrate that unlike previously described HIT proteins, DcpS is a modular protein that requires both the core HIT fold at the carboxyl-terminus and sequences at the amino-terminus of the protein for cap binding and hydrolysis. Interestingly, DcpS can efficiently compete for and hydrolyze the cap structure even in the presence of excess eIF4E, implying that DcpS could function to alleviate the accumulation of complexes between eIF4E and cap structure that would otherwise accumulate following mRNA decay. Using immunofluorescence microscopy, we demonstrate that DcpS is predominantly a nuclear protein, with low levels of detected protein in the cytoplasm. Furthermore, analysis of the endogenous hDcp2 protein reveals that in addition to the cytoplasmic foci, it is also present in the nucleus. These data reveal that both decapping enzymes are contained in the nuclear compartment, indicating that they may fulfill a greater function in the nucleus than previously appreciated.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1370627PMC
http://dx.doi.org/10.1261/rna.7660804DOI Listing

Publication Analysis

Top Keywords

decapping enzymes
16
cap structure
12
scavenger decapping
8
hdcp2 protein
8
rna moiety
8
hit proteins
8
hit fold
8
dcps
7
protein
6
decapping
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!