A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A mixture model application in disease mapping of malaria. | LitMetric

A mixture model application in disease mapping of malaria.

Southeast Asian J Trop Med Public Health

Clinical Epidemiology Unit, Office of the Dean, Faculty of Medicine, Ramathibodi Hospital, Mahidol University, Bangkok, Thailand.

Published: March 2004

Disease mapping, a method for displaying the geographical distribution of disease occurrence, has received attention for more than 2 decades. Because traditional approaches to disease mapping have some deficiencies and disadvantages in presenting the geographical distribution of disease, the mixture model--as an alternative approach--overcomes some of these deficiencies and provides a clearer picture of the spatial risk structure. The purpose of this study was twofold: (1) to investigate the geographical distribution of malaria in Thailand during 1995, 1996, and 1997 by applying the mixture model to disease mapping, and (2) to investigate the dynamic nature of malaria in Thailand during the 3-year time frame by applying the space-time mixture model. Non-parametric maximum likelihood estimation was employed to estimate the parameters of both the mixture model and the space-time mixture model. Applying Bayes' theorem, the 76 provinces of Thailand were classified into component risk levels by the rate of malaria for each province. Malaria intensively occurred in 4 provinces on the Thai-Myanmar border and in 2 provinces on the Thai-Cambodian border. Of the 76 provinces studied, 10 showed an increasing trend over the 3-year period. A comparison of the map based on the mixture model with the map based on the traditional percentiles method indicates that the non-parametric mixture model removes random variability from the map and provides a clearer picture of the spatial risk structure. The advantage of the mixture model approach to disease mapping is the graphical visual presentation of the prevalence of disease. The space-time mixture model more adequately investigates the dynamic nature of disease than does the mixture model.

Download full-text PDF

Source

Publication Analysis

Top Keywords

mixture model
40
disease mapping
20
geographical distribution
12
space-time mixture
12
mixture
11
disease
9
model
9
distribution disease
8
disease mixture
8
clearer picture
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!