Helicase Motif III in SecA is essential for coupling preprotein binding to translocation ATPase.

EMBO Rep

Institute of Molecular Biology and Biotechnology, Foundation of Research and Technology Hellas and Department of Biology, University of Crete, PO Box 1527, GR711 10 Iraklio, Crete, Greece.

Published: August 2004

The SecA ATPase is a protein translocase motor and a superfamily 2 (SF2) RNA helicase. The ATPase catalytic core ('DEAD motor') contains the seven conserved SF2 motifs. Here, we demonstrate that Motif III is essential for SecA-mediated protein translocation and viability. SecA Motif III mutants can bind ligands (nucleotide, the SecYEG translocase 'channel', signal and mature preprotein domains), can catalyse basal and SecYEG-stimulated ATP hydrolysis and can be activated for catalysis. However, Motif III mutation specifically blocks the preprotein-stimulated 'translocation ATPase' at a step of the reaction pathway that lies downstream of ligand binding. A functional Motif III is required for optimal ligand-driven conformational changes and kinetic parameters that underlie optimal preprotein-modulated nucleotide cycling at the SecA DEAD motor. We propose that helicase Motif III couples preprotein binding to the SecA translocation ATPase and that catalytic activation of SF2 enzymes through Motif-III-mediated action is essential for both polypeptide and nucleic-acid substrates.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1299117PMC
http://dx.doi.org/10.1038/sj.embor.7400206DOI Listing

Publication Analysis

Top Keywords

motif iii
24
helicase motif
8
preprotein binding
8
translocation atpase
8
atpase catalytic
8
iii
6
seca
5
motif
5
iii seca
4
seca essential
4

Similar Publications

Class IA PI3K p110δ and p110α subunits participate in TCR and costimulatory receptor signals involved in T cell-mediated immunity, but the role of p110α is not completely understood. Here, we analyzed a mouse model of the Cre-dependent functional inactivation of p110α (kinase dead) in T lymphocytes (p110αKD-T, KD). KD mice showed increased cellularity in thymus and spleen and altered T cell differentiation with increased number of CD4CD8 DP thymocytes, enhanced proportion of CD4 SP lymphocytes linked to altered apoptosis, lower Treg cells, and increased AKT and ERK phosphorylation in activated thymocytes.

View Article and Find Full Text PDF

We test here the prediction capabilities of the new generation of deep learning predictors in the more challenging situation of multistate multidomain proteins by using as a case study a coiled-coil family of Nucleotide-binding Oligomerization Domain-like (NOD-like) receptors from and a few extra examples for reference. Results reveal a truly remarkable ability of these platforms to correctly predict the 3D structure of modules that fold in well-established topologies. A lower performance is noticed in modeling morphing regions of these proteins, such as the coiled coils.

View Article and Find Full Text PDF

In 2001, two enzyme-encoding genes were recognized in the fruit fly . The genetic material, labeled and , encodes ribonuclease-type enzymes with slightly diverse target substrates. The human orthologue is .

View Article and Find Full Text PDF

Cry1A Insecticidal Toxins and Their Digests Do Not Stimulate Histamine Release from Cultured Rat Mast Cells.

Biology (Basel)

December 2024

Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2 No-Cho, Nishi-ku, Niigata 950-2181, Japan.

Public acceptance of genetically modified crops engineered with (Bt) insecticidal protein genes (BT-GMCs), which confer resistance to various lepidopteran insect pests, is generally lacking. As a major concern over BT-GMCs is the allergenicity of insecticidal proteins, alleviating safety concerns should help increase public acceptance. In this study, three lepidopteran-specific Bt toxins, Cry1Aa, Cy1Ab, and Cry1Ac, were treated with simulated digestive fluids under various conditions.

View Article and Find Full Text PDF

Dengue fever is a serious health issue, particularly in tropical countries like Singapore. We have previously found that dengue virus (DENV) recruits human plasmin in blood meal to enhance the permeability of the mosquito midgut for infection. Here, using biolayer interferometry, we found that neither kringle-4 nor kringle-5 plasmin domains alone binds well to dengue virus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!