Single ventricular cells were enzymatically isolated from guinea pig hearts and the effects of sevoflurane on the delayed rectifier K(+) current were investigated by the patch clamp method. The rapidly (I(Kr)) and slowly activating delayed rectifier K(+) current (I(Ks)) were isolated using chromanol 293B, a selective blocker for I(Ks) or E4031 (N-[4-[[1-[2-(6-methyl-2-pyridinyl)ethyl]-4-piperidinyl]carbonyl]phenyl]methanesulfonamide dihydrochloride), a blocker for I(Kr). Sevoflurane and halothane decreased I(Ks) in a concentration-dependent manner with an IC(50) value of 0.38 mM for sevoflurane and 1.05 mM for halothane. I(Ks) inhibition was characterized by suppression of maximum conductance with little effect on activation kinetics. Inhibition occurred immediately after anesthetic application and recovered upon wash-out. In contrast to the marked inhibition of I(Ks), I(Kr) was hardly affected by sevoflurane. Under the current clamp, sevoflurane prolonged the action potential duration in a reversible manner and this effect was more marked when I(Kr) was inhibited by E4031. The results suggest that sevoflurane inhibits I(Ks), and not I(Kr), in a concentration-dependent manner at clinically relevant concentrations. The resulting prolongation of ventricular repolarization may partly account for the clinical observation of excessive QT prolongation by these anesthetics.

Download full-text PDF

Source
http://dx.doi.org/10.1254/jphs.fp0040024DOI Listing

Publication Analysis

Top Keywords

delayed rectifier
12
rectifier current
12
slowly activating
8
activating delayed
8
guinea pig
8
ventricular cells
8
ikr sevoflurane
8
concentration-dependent manner
8
iks ikr
8
sevoflurane
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!