Silencing gene expression by siRNAs is rapidly becoming a powerful tool for the genetic analysis of mammalian cells. However, the rapid degradation of siRNA and the limited duration of its action call for an efficient delivery technology. Accordingly, we describe here that Atelocollagen complexed with siRNA is resistant to nucleases and is efficiently transduced into cells, thereby allowing long-term gene silencing. Site-specific in vivo administration of an anti-luciferase siRNA/Atelocollagen complex reduced luciferase expression in a xenografted tumor. Furthermore, Atelocollagen-mediated transfer of siRNA in vivo showed efficient inhibition of tumor growth in an orthotopic xenograft model of a human non-seminomatous germ cell tumor. Thus, for clinical applications of siRNA, an Atelocollagen-based non-viral delivery method could be a reliable approach to achieve maximal function of siRNA in vivo.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC506824 | PMC |
http://dx.doi.org/10.1093/nar/gnh093 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!