By stimulating the migration and proliferation of endothelial cells (ECs), vascular endothelial growth factor (VEGF) is a potent angiogenic factor. However, the molecular mechanism involved in the VEGF-induced angiogenesis remains elusive. We hypothesized that sterol regulatory element binding proteins (SREBPs), transcription factors governing cellular lipid homeostasis, play an important role in regulating angiogenesis in response to VEGF. VEGF activated SREBP1 and SREBP2 in ECs, as demonstrated by the increased SREBPs, their cleavage products, and the upregulation of the targeted genes. VEGF-induced SREBP activation depended on SREBP cleavage-activating protein (SCAP), because knocking down SCAP by RNA interference (RNAi) inhibited SREBP activation in response to VEGF. SREBP activation was also blocked by 25-hydroxycholesterol (25-HC). To verify the functional implication of SREBPs in VEGF-induced angiogenesis, we tested the role of SREBPs in EC migration and proliferation. SCAP RNAi or 25-HC inhibited VEGF-induced pseudopodia extension and migration of ECs. Both treatments inhibited VEGF-induced EC proliferation, with cell growth arrested at the G(0)/G(1) phase and a concomitant decrease of the S phase. Blocking the PI3K-Akt pathway inhibited the VEGF-activated SREBPs, demonstrating that PI3K-Akt regulates SREBPs. Consistent with our in vitro data, SREBP1 was detected in newly developed microvasculatures in a rabbit skin partial-thickness wound-healing model. SREBP inhibition also markedly suppressed VEGF-induced angiogenesis in chick embryos. In summary, this study identifies SREBPs as the key molecules in regulating angiogenesis in response to VEGF.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1161/01.RES.0000139956.42923.4A | DOI Listing |
Arterioscler Thromb Vasc Biol
December 2024
Department of Biochemistry and Molecular Biology, School of Basic Medicine, Hebei Medical University, Shijiazhuang, China. (Q.F., L.G., C.Y., X.L., Y.L., C.L., W.Z., Y.Z., W.Y., Y.M., R.W., L.L., Y.P., H.W., M.H., L.N.).
Background: Unwanted angiogenesis is involved in the progression of various malignant tumors and cardiovascular diseases, and the factors that regulate angiogenesis are potential therapeutic targets. We tested the hypothesis that DCBLD1 (discoidin, CUB, and LCCL domain-containing protein 1) is a coreceptor of VEGFR-2 (vascular endothelial growth factor receptor-2) and modulates angiogenesis in endothelial cells.
Methods: A carotid artery ligation model and retinal angiogenesis assay were used to study angiogenesis using globe knockout or endothelial cell-specific conditional knockout mice in vivo.
Biomol Ther (Seoul)
January 2025
College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea.
Translationally controlled tumor protein (TCTP) is a regulatory protein that plays pivotal roles in cellular processes including the cell cycle, apoptosis, microtubule stabilization, embryo development, stress responses, and cancer. However, the molecular mechanism by which it promotes tumor angiogenesis is still unclear. In this study, we explored the mechanisms underlying stimulation of angiogenesis by a novel TCTP.
View Article and Find Full Text PDFExp Eye Res
January 2025
Schepens Eye Research Institute of Massachusetts Eye and Ear, Boston, MA, USA; Department of Ophthalmology, Harvard Medical School, Boston, MA, USA; Department of Pathology, Harvard Medical School, Boston, MA, USA. Electronic address:
The endothelial glycocalyx, lining the apical surface of the endothelium, is involved in a host of vascular processes. The glycocalyx is comprised of a network of membrane-bound proteoglycans and glycoproteins along with associated plasma proteins. One such glycoprotein is endomucin (EMCN), which our lab has revealed is a modulator of VEGFR2 function.
View Article and Find Full Text PDFJ Cardiovasc Transl Res
October 2024
Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China.
Prev Nutr Food Sci
September 2024
Department of Food and Nutrition, Sunchon National University, Jeonnam 57922, Korea.
Age-related macular degeneration (AMD), often triggered by endothelial barrier disruption through vascular endothelial growth factor (VEGF), is a leading cause of blindness. This study investigated the inhibitory effects of phenolic compounds on VEGF-induced endothelial cell proliferation, migration, angiogenesis, and permeability using human retinal microvascular endothelial cells (hRECs). Thirty-seven polyphenolic compounds were selected from various databases based on their antioxidant properties, abundance in food, and solubility.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!