Quantum chemical calculations and mutational analysis suggest heat shock protein 90 catalyzes trans-cis isomerization of geldanamycin.

Chem Biol

Center for Molecular Modeling, Center for Information Technology, National Institutes of Health, Building 12A, Room 2049, Bethesda, Maryland 20892, USA.

Published: July 2004

AI Article Synopsis

  • Geldanamycin (GA) has a significantly weaker affinity for heat shock protein 90 (HSP90) compared to radicicol, with structural differences affecting their binding.
  • X-ray crystallography reveals that GA undergoes a major conformational change when binding to HSP90, suggesting that HSP90 may facilitate this alteration through a catalysis process.
  • Ser113, a key residue in HSP90, is crucial for the isomerization of GA, and this requirement may account for the enhanced binding of GA in cellular environments compared to when it’s in a purified state.

Article Abstract

The affinity of geldanamycin (GA) for binding to heat shock protein 90 (HSP90) is 50- to 100-fold weaker than is the affinity of the structurally distinct natural product radicicol. X-ray crystallography shows that although radicicol maintains its free conformation when bound to HSP90, the conformation of GA is dramatically altered from an extended conformation with a trans amide bond to a kinked shape in which the amide group in the ansa ring has the cis configuration. We have performed ab initio quantum chemical calculations to demonstrate that the trans-cis isomeriztion of GA in solution is both kinetically and thermodynamically unfavorable. Thus, we propose that HSP90 catalyzes the isomerization of GA. We identify Ser113, a conserved residue outside the ATP binding pocket, as essential for the isomerization of GA. In support of this model, we show that radicicol binds equally well to both wild-type HSP90 and the Ser113 mutant, whereas the binding of GA to the Ser113 mutant is decreased significantly from its binding to wild-type HSP90. Based on this finding, a mechanism of keto-enol tautomerization of GA catalyzed by HSP90 is proposed. The added requirement of isomerization prior to tight binding may explain the enhanced binding affinity of GA for HSP90 in a cell extract versus in a purified form.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chembiol.2004.05.010DOI Listing

Publication Analysis

Top Keywords

quantum chemical
8
chemical calculations
8
heat shock
8
shock protein
8
wild-type hsp90
8
ser113 mutant
8
hsp90
7
binding
6
calculations mutational
4
mutational analysis
4

Similar Publications

Efflux pumps that transport antibacterial drugs out of bacterial cells have broad specificity, commonly leading to broad spectrum resistance and limiting treatment strategies for infections. It remains unclear how efflux pumps can maintain this broad spectrum specificity to diverse drug molecules while limiting the efflux of other cytoplasmic content. We have investigated the origins of this broad specificity using theoretical models informed by the experimentally determined structural and kinetic properties of efflux pumps.

View Article and Find Full Text PDF

SiO-Mediated Hydrothermal Synthesis of Spiroffite-Type CoTeO.

Inorg Chem

January 2025

Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, United States.

The hydrothermal synthesis of novel materials typically relies on both knowledge of the redox activities of all cations present in the reaction solution and a small toolset of so-called mineralizers to tune the solution's overall chemical potential. Upon the use of a less conventional mineralizer species, SiO, we show the stabilization of spiroffite-type CoTeO under less forceful hydrothermal conditions than those in previous reports. When synthesized in the presence of both SiO and each respective alkali carbonate as a secondary mineralizer, silicon substitution in place of tellurium in the host structure becomes apparent, and the corresponding disorder introduced gives rise to enhanced low-temperature ferromagnetism.

View Article and Find Full Text PDF

Inorganic photochromic materials offer several advantages over organic compounds, including relatively inexpensive and higher thermal stability. However, tuning their color with the same component has remained a significant challenge. In this study, we demonstrate that the photochromic color of Cu-doped ZnS nanocrystals (NCs), which is initially pale yellow before light irradiation, can be tuned from gray to brown by adjusting the surface stoichiometry of Zn and S, which is controlled through the use of thiol and non-thiol ligands.

View Article and Find Full Text PDF

The advent of two-dimensional van der Waals materials is a frontier of condensed matter physics and quantum devices. However, characterizing such materials remains challenging due to the limitations of bulk material techniques, necessitating the development of specialized methods. Here, we investigate the superconducting properties of BiSrCaCuO flakes by integrating them with a hybrid superconducting microwave resonator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!