A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Genetic and cellular therapies for cerebral infarction. | LitMetric

Genetic and cellular therapies for cerebral infarction.

Neurosurgery

Laboratory of Genetic and Cellular Engineering, and Neurosurgical Service, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.

Published: August 2004

Neurosurgeons, working as surgical scientists, can have a prominent role in developing and implementing genetic and cellular therapies for cerebral ischemia. The rapid emergence of both genetic and cellular therapies for neural regeneration warrants a careful analysis before implementation of human studies to understand the pitfalls and promises of this strategy. In this article, we review the topic of genetic and cellular therapy for stroke to provide a foundation for practicing neurosurgeons and clinical scientists who may become involved in this type of work. In Part 1, we review preclinical approaches with gene transfer, such as 1) improved energy delivery, 2) reduction of intracellular calcium availability, 3) abrogation of effects of reactive oxygen species, 4) reduction of proinflammatory cytokine signaling, 5) inhibition of apoptosis mediators, and 6) restorative gene therapy, that are paving the way to develop new strategies to treat cerebral infarction. In Part 2, we discuss the results of studies that address the possibility of using cellular therapies for stroke in animal models and in human trials by reviewing 1) the basics of stem cell biology, 2) exogenous and 3) and endogenous cell sources for therapy, and 4) clinical considerations in cell therapy applications. These emerging technologies based on the advancements made in recent years in the fields of genetics, therapeutic cloning, neuroscience, stem cell biology, and gene therapy provide significant potential for new therapies for stroke.

Download full-text PDF

Source
http://dx.doi.org/10.1227/01.neu.0000129681.85731.00DOI Listing

Publication Analysis

Top Keywords

genetic cellular
16
cellular therapies
16
therapies cerebral
8
cerebral infarction
8
gene therapy
8
therapies stroke
8
stem cell
8
cell biology
8
therapies
5
therapy
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!