The air elimination capabilities of pressure infusion devices and fluid-warmers.

Anaesthesia

Department of Anaesthesiology, University Hospital Aachen, Germany, Pauwelsstrasse 30, D-52074 Aachen, Germany.

Published: August 2004

Pressurised infusion devices may have only limited capability to detect and remove air during pressurised infusions. In order to assess pressure infusion systems with regard to their actual air elimination capabilities four disposable pressure infusion systems and fluid warmers were investigated: The Level 1 (L-1), Ranger (RA), Gymar (GY), and the Warmflo (WF). Different volumes of air were injected proximal to the heat exchanger and the remaining amount of air that was delivered at the end of the tubing was measured during pressurised infusions. Elimination of the injected air (100-200 ml) was superior by the RA system when compared to L-1 (p < 0.01). The GY and WF systems failed to eliminate the injected air. In conclusion, air elimination was best performed by the RA system. In terms of the risk of air embolism during pressurised infusions, improvements in air elimination of the investigated devices are still necessary.

Download full-text PDF

Source
http://dx.doi.org/10.1111/j.1365-2044.2004.03841.xDOI Listing

Publication Analysis

Top Keywords

air elimination
16
pressure infusion
12
pressurised infusions
12
air
10
elimination capabilities
8
infusion devices
8
infusion systems
8
injected air
8
capabilities pressure
4
infusion
4

Similar Publications

The highest sheet symmetry form of graphyne, with one triple bond between each neighboring hexagon in graphene, irreversibly transforms exothermically at ambient pressure and low temperatures into a nongraphitic, planar-sheet, zero-bandgap phase consisting of intrasheet-bonded sp carbons. The synthesis of this sp carbon phase is demonstrated, and other carbon phases are described for possible future synthesis from graphyne without breaking graphyne bonds. While measurements and theory indicate that the reacting graphyne becomes nonplanar because of sheet wrinkling produced by dimensional mismatch between reacted and nonreacted sheet regions, sheet planarity is regained when the reaction is complete.

View Article and Find Full Text PDF

Centrifugation is crucial for size and density-based sample separation, but low-volume or delicate samples suffer from loss and impurity issues during repeated spins. We introduce the "Spinochip", a novel microfluidic system utilizing centrifugal forces for efficient filling of dead-end microfluidic channels. The Spinochip enables versatile fluid manipulation with a single reservoir for both inlet and outlet functions.

View Article and Find Full Text PDF

Impact of Weak Vibration Generated by a Refrigerator on Protein Aggregation.

AAPS J

January 2025

Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan.

Protein aggregates and particles in biopharmaceuticals can induce adverse immune responses in patients. Thus, suppression of the formation of protein aggregates and particles is important for the successful development of therapeutic proteins. Mechanical stresses, including agitation, are widely recognized as stress factors that generate protein aggregates and particles.

View Article and Find Full Text PDF

Aerial urination suggests undescribed sensory modality and social function in river dolphins.

Behav Processes

January 2025

CetAsia Research Group Ltd., Baysville, Ontario, Canada; Department of Biology, Trent University, Peterborough, Ontario, Canada.

Scent marking through urine spraying is known to aid mate selection, territory marking and chemical communication in terrestrial, but not in aquatic mammals. We quantify an unusual aerial urination behaviour in botos (Inia geoffrensis) and discuss its potential functions. Between 2014 and 2018, we conducted land-based behavioural surveys on wild botos in central Brazil, recording the sequence, duration and social context of aerial urination.

View Article and Find Full Text PDF

The present study evaluates for the first time the seasonal performance of an innovative green groundwater treatment. The pilot plant combines microalgae-bacteria treatment and a cork-wood biofilter to reduce nitrates, pesticides, antibiotics (ABs), and antibiotic resistance genes (ARGs) from groundwater. Groundwater had nitrate concentrations ranging from 220 to 410 mg/L, while ABs (sulfonamides and fluoroquinolones) and pesticides (triazines) were detected at concentrations ranging from a few ng/L to 150 ng/L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!