We describe a Paneth cell carcinoma arising within the ampulla of Vater in a 64-year-old man. The phenotype of virtually all neoplastic cells was consistent with that of Paneth cells, based on routine morphology and their strong positive immunostaining for lysozyme. Additional widespread positive immunostaining for carcinoembryonic antigen and CA 19.9 supports a totipotential cell as the origin of such neoplastic cells. This case, therefore, represents a true Paneth cell carcinoma, as opposed to inclusion of occasional neoplastic Paneth cells into a poorly differentiated adenocarcinoma. This pattern of differentiation is rare, and predictions regarding its ultimate biological behavior and malignant potential must be guarded.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.5858/2004-128-908-PCCOTA | DOI Listing |
Pathol Res Pract
January 2025
Department of Pathology and Laboratory Medicine, Penn State Health Hershey Medical Center, Penn State College of Medicine, Hershey, PA 17033, United States. Electronic address:
Our understanding of predictors of progression in Barrett's esophagus (BE) remains incomplete. To address this gap, we evaluated histological features and biomarkers that could predict dysplastic/neoplastic progression in patients with BE. We conducted a retrospective study to identify eligible BE patients and classified the cases into two groups: cases with BE progression (n = 10; progressing to high-grade dysplasia or carcinoma within five years of initial diagnosis) and cases without BE progression (n = 52; without progression to high-grade dysplasia or carcinoma within five years).
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Oncode Institute, Hubrecht Institute-Royal Netherlands Academy of Arts and Science, Utrecht 3584 CT, The Netherlands.
Matrigel/BME, a basement membrane-like preparation, supports long-term growth of epithelial 3D organoids from adult stem cells [T. Sato , , 262-265 (2009); T. Sato , , 1762-1772 (2011)].
View Article and Find Full Text PDFActa Histochem Cytochem
December 2024
Department of Anatomy, School of Medicine, University of Occupational and Environmental Health, 1-1, Iseigaoka, Yahatanishi, Kitakyushu, Fukuoka 807-8555, Japan.
Inflammatory bowel disease is triggered by abnormalities in epithelial barrier function and immunological responses, although its pathogenesis is poorly understood. The dextran sodium sulphate (DSS)-induced colitis model has been used to examine inflammation in the colon. Damage to mucosa primality occurs in the large intestine and scarcely in the small intestine.
View Article and Find Full Text PDFBiomedicines
December 2024
Department of Molecular Cell Biology and Immunology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, 1081 HV Amsterdam, The Netherlands.
: The barrier properties of the human small intestine play a crucial role in regulating digestion, nutrient absorption and drug metabolism. Current in vitro organotypic models consist only of an epithelium, which does not take into account the possible role of stromal cells such as fibroblasts or the extracellular matrix (ECM) which could contribute to epithelial barrier properties. Therefore, the aim of this study was to determine whether these stromal cells or ECM were beneficial or detrimental to barrier function when incorporated into an organotypic human small intestine model.
View Article and Find Full Text PDFBiomedicines
December 2024
Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115201, Taiwan.
Gut health is crucial in many ways, such as in improving human health in general and enhancing production in agricultural animals. To maximize the effect of a healthy gastrointestinal tract (GIT), an understanding of the regulation of intestinal functions is needed. Proper intestinal functions depend on the activity, composition, and behavior of intestinal epithelial cells (IECs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!