The multitubulin hypothesis proposes that chemically distinct tubulins may possess different polymerization properties or may form functionally different microtubules. To test this hypothesis, we have examined the functional properties and the structures of singlet-specific nonneural and neural tubulins from Antarctic fishes. Tubulins were purified from eggs of Notothenia coriiceps neglecta, and from brain tissues of N. coriiceps neglecta or N. gibberifrons, by DEAE ion-exchange chromatography and cycles of microtubule assembly/disassembly. At temperatures between 0 and 20 degrees C, each of these tubulins polymerized efficiently in vitro to yield microtubules of normal morphology. Critical concentrations for polymerization of egg tubulin ranged from 0.057 mg/ml at 3 degrees C to 0.002 mg/ml at 18 degrees C, whereas those for brain tubulin at like temperatures were 4-10-fold larger. Polymerization of both tubulins was entropically driven, but the apparent standard enthalpy and entropy changes for microtubule elongation by egg tubulin (delta Happ0 = +33.9 kcal/mol, delta Sapp0 = +151 entropy units) were significantly greater than values observed for brain tubulin (delta Happ0 = +26.5 kcal/mol, delta Sapp0 = +121 entropy units). Egg tubulin was composed of approximately six alpha and two beta chains and lacked the beta III isotype, whereas brain tubulin was more complex (greater than or equal to 10 of each chain type). Furthermore, egg alpha tubulins were more basic, and their carboxyl termini more resistant to cleavage by subtilisin, than were the alpha chains of brain. We conclude that brain and egg tubulins from the Antarctic fishes are functionally distinct in vitro, due either to qualitative or quantitative differences in isotypic composition, to differential posttranslational modification of shared isotypes, or to both.
Download full-text PDF |
Source |
---|
Mar Drugs
November 2024
School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy.
In the present review, we summarize genome mining of genomic data obtained from the psychrophilic Antarctic marine ciliate and its evolutionary-close mesophilic cosmopolitan counterpart . This analysis highlights adaptation strategies that are unique to the Antarctic ciliate, including antioxidant gene duplication and distinctive substitutions that may play roles in increased drug binding affinity and enzyme reaction rate in cold environments. Enzymes from psychrophiles are usually characterized by high activities and reaction rates at low temperatures compared with their counterparts from mesophiles and thermophiles.
View Article and Find Full Text PDFComp Biochem Physiol Part D Genomics Proteomics
March 2024
Key Laboratory of Marine Eco-Environmental Science and Technology, First Institute of Oceanography, MNR, Qingdao, China; Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, China. Electronic address:
The survival and physiological functions of polar marine organisms are impacted by global climate changes. Investigation of the adaptation mechanisms underlying biomineralization in polar organisms at low temperatures is important for understanding mineralized organismal sensitivity to climate change. Here, we performed electron probe analysis on the shields of Antarctic polychaete Sternaspis sendalli and Arctic polychaete Sternaspis buzhinskajae (Sternaspidae), and sequenced the transcriptomes of the tissues surrounding shields to examine biomineral characteristics and adaptive mechanisms in persistently cold environments.
View Article and Find Full Text PDFJ Fungi (Basel)
March 2023
Laboratory of Microbial Ecology, Department of Ecological Sciences, Faculty of Sciences, Universidad de Chile, Santiago 7800003, Chile.
lichens can colonize extreme habitats, such as high-elevation ecosystems, but their biodiversity is still largely unknown in these environments, especially in the southern hemi- sphere. We assessed the genetic diversity of mycobionts and cyanobionts of 60 lichens collected in three high Andean steppes of southern Chile using LSU, , COR3 and ITS loci for mycobionts, and SSU and loci for cyanobionts. We obtained 240 sequences for the different mycobiont markers and 118 for the cyanobiont markers, including the first report of sequences of through modifying a previously designed primer.
View Article and Find Full Text PDFMicroorganisms
December 2022
School of Biosciences and Veterinary Medicine, University of Camerino, via Gentile III da Varano, 62032 Camerino, Italy.
Protozoans of the Phylum Ciliophora (ciliates) assemble many diverse microtubular structures in a single cell throughout the life cycle, a feature that made them useful models to study microtubule complexity and the role of tubulin isotypes. In the Antarctic ciliate Euplotes focardii we identified five β-tubulin isotypes by genome sequencing, named EFBTU1, EFBTU2, EFBTU3, EFBTU4 and EFBTU5. By using polyclonal antibodies directed against EFBTU2/EFBTU1 and EFBTU3, we show that the former isotypes appear to be involved in the formation of all microtubular structures and are particularly abundant in cilia, whereas the latter specifically localizes at the bases of cilia.
View Article and Find Full Text PDFSci Rep
September 2021
School of Biosciences and Veterinary Medicine, University of Camerino, 62032, Camerino, MC, Italy.
The macronuclear (MAC) genomes of ciliates belonging to the genus Euplotes species are comprised of numerous small DNA molecules, nanochromosomes, each typically encoding a single gene. These genomes are responsible for all gene expression during vegetative cell growth. Here, we report the analysis of the MAC genome from the Antarctic psychrophile Euplotes focardii.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!