Distinct prion strains can be distinguished by differences in incubation period, neuropathology and biochemical properties of disease-associated prion protein (PrP(Sc)) in inoculated mice. Reliable comparisons of mouse prion strain properties can only be achieved after passage in genetically identical mice, as host prion protein sequence and genetic background are known to modulate prion disease phenotypes. While multiple prion strains have been identified in sheep scrapie and Creutzfeldt-Jakob disease, bovine spongiform encephalopathy (BSE) is thought to be caused by a single prion strain. Primary passage of BSE prions to different lines of inbred mice resulted in the propagation of two distinct PrP(Sc) types, suggesting that two prion strains may have been isolated. To investigate this further, these isolates were subpassaged in a single line of inbred mice (SJL) and it was confirmed that two distinct prion strains had been identified. MRC1 was characterized by a short incubation time (110+/-3 days), a mono-glycosylated-dominant PrP(Sc) type and a generalized diffuse pattern of PrP-immunoreactive deposits, while MRC2 displayed a much longer incubation time (155+/-1 days), a di-glycosylated-dominant PrP(Sc) type and a distinct pattern of PrP-immunoreactive deposits and neuronal loss. These data indicate a crucial involvement of the host genome in modulating prion strain selection and propagation in mice. It is possible that multiple disease phenotypes may also be possible in BSE prion infection in humans and other animals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1099/vir.0.79889-0 | DOI Listing |
Alzheimers Dement
December 2024
Colorado State University, Fort Collins, CO, USA.
Background: In tauopathies, the protein tau misfolds into a b-sheet conformation that self-templates and spreads throughout the brain causing progressive degeneration. Biological and structural data have shown that the shape, or strain, that tau adopts when it misfolds determines which disease a patient will develop. We previously used HEK293T cells expressing TauRD-YFP to show that tau strain formation is isoform-specific.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Case Western Reserve University, Cleveland, OH, USA.
Background: Pathological tau forms from Alzheimer's disease (AD) brains act as seeds, replicating in cells and forming tau aggregates in a template-like manner. The exploration of this prion-like pathogenic mechanism has predominantly occurred in transgenic mice and cell systems that overexpress tau protein and its truncated forms with pro-aggregation mutations. However, these systems do not entirely capture the propagation kinetics and template conformational changes of various tau seeds.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Southampton, Southampton, United Kingdom.
Background: Systemic inflammation in patients with Alzheimer's disease (AD) has been associated with an exacerbation in cognitive decline, but the underlying mechanisms remain largely unknown. In AD, intraneuronal hyperphosphorylated tau spreads through the brain via trans-synaptic prion-like propagation. Evidence suggests that propagation of tau pathology is linked to neuroinflammation.
View Article and Find Full Text PDFFront Mol Neurosci
December 2024
Laboratory of Veterinary Hygiene, Faculty of Veterinary Medicine, Graduate School of Infectious Diseases, Hokkaido University, Sapporo, Japan.
The accumulation of a disease-specific isoform of prion protein (PrP) and histopathological lesions, such as neuronal loss, are unevenly distributed in the brains of humans and animals affected with prion diseases. This distribution varies depending on the diseases and/or the combinations of prion strain and experimental animal. The brain region-dependent distribution of PrP and neuropathological lesions suggests a neuronal cell-type-dependent prion propagation and vulnerability to prion infection.
View Article and Find Full Text PDFiScience
December 2024
Université Paris-Saclay, INRAe, UVSQ, VIM, 78350 Jouy-en-Josas, France.
Prion diseases, or transmissible spongiform encephalopathies (TSEs), are neurodegenerative disorders caused by the accumulation of misfolded conformers (PrP) of the cellular prion protein (PrP). During the pathogenesis, the PrP seeds disseminate in the central nervous system and convert PrP leading to the formation of insoluble assemblies. As for conventional infectious diseases, variations in the clinical manifestation define a specific prion strain which correspond to different PrP structures.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!