Astrocytoma is comprised of a group of common intracranial neoplasms that are classified into four grades based on the World Health Organization histological criteria and patient survival. To date, histological grade, patient age, and clinical performance, as reflected in the Karnofsky score, are the most reliable prognostic predictors. Recently, there has been a significant effort to identify additional prognostic markers using objective molecular genetic techniques. We believe that the identification of such markers will characterize new chromosomal loci important in astrocytoma progression and aid clinical diagnosis and prognosis. To this end, our laboratory used comparative genomic hybridization to identify DNA sequence copy number changes in 102 astrocytomas. Novel losses of 19p loci were detected in low-grade pilocytic astrocytomas and losses of loci on 9p, 10, and 22 along with gains on 7, 19, and 20 were detected in a significant proportion of high-grade astrocytomas. The Cox proportional hazards statistical modeling showed that the presence of +7q and -10q comparative genomic hybridization alterations significantly increased a patient's risk of dying, independent of histological grade. This investigation demonstrates the efficacy of comparative genomic hybridization for identifying tumor suppressor and oncogene loci in different astrocytic grades. The cumulative effect of these loci is an important consideration in their diagnostic and prognostic implications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1867634 | PMC |
http://dx.doi.org/10.1016/S1525-1578(10)60507-7 | DOI Listing |
Dig Dis Sci
January 2025
Ningxia Medical University, Xing Qing Block, Shengli Street No.1160, Yin Chuan City, 750004, Ningxia Province, People's Republic of China.
Background: Colon adenocarcinoma (COAD) is a leading cause of cancer-related mortality worldwide. Transient receptor potential vanilloid 4 (TRPV4), a calcium-permeable non-selective cation channel, has been implicated in various cancers, including COAD. This study investigates the role of TRPV4 in colon adenocarcinoma and elucidates its potential mechanism via the ferroptosis pathway.
View Article and Find Full Text PDFClin Rheumatol
January 2025
Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou Province, China.
Objective: Rheumatoid arthritis (RA) is an autoimmune condition that causes severe joint deformities and impaired functionality, affecting the well-being and daily life of individuals. Consequently, there is a pressing demand for identifying viable therapeutic targets for treating RA. This study aimed to explore the molecular mechanisms of osteoclast differentiation in PBMC from patients with RA through transcriptome sequencing and bioinformatics analysis.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Pediatric Rheumatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt.
Background: Interleukin-1 receptor-associated kinase1 (IRAK1) plays a considerable role in the inflammatory signaling pathway. The current study aimed to identify any association between (rs1059703) single nucleotide polymorphism (SNP) and vulnerability to rheumatological diseases in the pediatric and adult Egyptian population.
Patients And Methods: The current study included four patient groups: adult Systemic lupus erythematosus (SLE), Rheumatoid arthritis (RA), juvenile systemic lupus erythematosus (JSLE), and juvenile idiopathic arthritis (JIA).
Mol Biol Rep
January 2025
Thalassemia & Hemoglobinopathy Research Center, Health Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
Introduction: Hematologic malignancies, originating from uncontrolled growth of hematopoietic and lymphoid tissues, constitute 6.5% of all cancers worldwide. Various risk factors including genetic disorders and single nucleotide polymorphisms play a role in the pathogenesis of hematologic malignancies.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Zoological Survey of India, Kolkata, 700053, India.
Background: The endangered Kashmir musk deer (Moschus cupreus), native to high-altitude Himalayas, is an ecological significant and endangered ungulate, threatened by habitat loss and poaching for musk pod distributed in western Himalayan ranges of India, Nepal and Afghanistan. Despite its critical conservation status and ecological importance in regulating vegetation dynamics, knowledge gaps persist regarding its population structure and genetic diversity, hindering effective management strategies.
Methods And Results: We aimed to understand the population genetics of Kashmir musk deer in north-western Himalayas using two mitochondrial DNA (mtDNA) regions and 11 microsatellite loci.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!