Objective: Our aim was to test the feasibility of a hands-free approach to MRI that allows the interventionalist to track an angiographic catheter in real time throughout the procedure and to automatically change imaging parameters by catheter manipulation.

Materials And Methods: A tracking method that is based on an active device localization was implemented on a 1.5-T MRI scanner. The system determines the current position and orientation of a catheter in 3D space in an endless feedback loop. Automatic scanning plane-adjustment procedures written in the software of the MRI system ensure image acquisition at the location of the catheter tip. The system calculates the device velocity to automatically adjust parameters such as field of view (FOV) and resolution. To evaluate the feasibility and performance in vivo and ex vivo, we performed experiments in two vessel phantoms and on six pigs.

Results: The system collected the tracking data within 40 msec; an additional 10-20 msec was then required to perform the localization and velocity calculations and to update the image parameters. The system could localize a motionless catheter in the aorta in 100% and a moving catheter in 98% of measured attempts. The system responded in real time to changes in device velocity by dynamically adjusting spatial resolution and FOV in both phantom and porcine trials. Using this technique, we successfully catheterized the renal artery in two pigs.

Conclusion: Active tracking, combined with automatic scanning plane and imaging parameter adjustment, provides an intuitive MRI scanner interface for the guidance of the vascular procedure.

Download full-text PDF

Source
http://dx.doi.org/10.2214/ajr.183.2.1830391DOI Listing

Publication Analysis

Top Keywords

mri scanner
12
real time
8
automatic scanning
8
device velocity
8
catheter
7
system
6
mri
5
catheter-driven mri
4
scanner approach
4
approach intravascular
4

Similar Publications

Templates for the acquisition of large datasets such as the Human Connectome Project guide the neuroimaging community to reproducible data acquisition and scientific rigor. By contrast, small animal neuroimaging often relies on laboratory-specific protocols, which limit cross-study comparisons. The establishment of broadly validated protocols may facilitate the acquisition of large datasets, which are essential for uncovering potentially small effects often seen in functional MRI (fMRI) studies.

View Article and Find Full Text PDF

Objectives: To assess the ability of a previously trained deep-learning algorithm to identify the presence of inflammation on MRI of sacroiliac joints (SIJ) in a large external validation set of patients with axial spondyloarthritis (axSpA).

Methods: Baseline SIJ MRI scans were collected from two prospective randomised controlled trials in patients with non-radiographic (nr-) and radiographic (r-) axSpA (RAPID-axSpA: NCT01087762 and C-OPTIMISE: NCT02505542) and were centrally evaluated by two expert readers (and adjudicator in case of disagreement) for the presence of inflammation by the 2009 Assessment of SpondyloArthritis International Society (ASAS) definition. Scans were processed by the deep-learning algorithm, blinded to clinical information and central expert readings.

View Article and Find Full Text PDF

Purpose: To describe a case of short common trunk of the occipital artery (OA) and ascending pharyngeal artery (APA) arising from the internal carotid artery (ICA).

Methods: A 36-year-old woman with a history of surgical resection of a right lateral ventricular meningioma and atheromatous plaque of the right ICA underwent cranial magnetic resonance (MR) imaging and MR angiography of the head and neck region with a 3-Tesla scanner.

Results: MR angiography of the neck region showed a small atheromatous plaque at the origin of the right ICA and an anomalous artery arising from the posteromedial aspect of the right ICA at the distal end of the carotid bulb.

View Article and Find Full Text PDF

Transient shear wave elastometry using a portable magnetic resonance sensor.

Magn Reson Med

January 2025

MRI Research Centre, Physics, University of New Brunswick, Fredericton, New Brunswick, Canada.

Purpose: Magnetic resonance elastography (MRE) provides detailed maps of tissue stiffness, helping to diagnose various health conditions, but requires the use of expensive clinical MRI scanners. Our approach utilizes compact, cost-effective portable MR sensors that offer bulk characterization of material properties in a region of interest close to the surface (within 1-2 cm). This accessible instrument could enable routine monitoring and prevention of diseases not readily evaluated with conventional tools.

View Article and Find Full Text PDF

Background: The spinal column is a frequent site for metastases, affecting over 30% of solid tumor patients. Identifying the primary tumor is essential for guiding clinical decisions but often requires resource-intensive diagnostics.

Purpose: To develop and validate artificial intelligence (AI) models using noncontrast MRI to identify primary sites of spinal metastases, aiming to enhance diagnostic efficiency.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!