Surface relief gratings on azobenzene containing polymer films were prepared under irradiation by actinic light. Finite element modeling of the inscription process was carried out using linear viscoelastic analysis. It was assumed that under illumination the polymer film undergoes considerable plastification, which reduces its original Young's modulus by at least three orders of magnitude. Force densities of about 10(11) N/m3 were necessary to reproduce the growth of the surface relief grating. It was shown that at large deformations the force of surface tension becomes comparable to the inscription force and therefore plays an essential role in the retardation of the inscription process. In addition to surface profiling the gradual development of an accompanying density grating was predicted for the regime of continuous exposure. Surface grating development under pulselike exposure cannot be explained in the frame of an incompressible fluid model. However, it was easily reproduced using the viscoelastic model with finite compressibility.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.1642606DOI Listing

Publication Analysis

Top Keywords

linear viscoelastic
8
viscoelastic analysis
8
azobenzene polymer
8
surface relief
8
inscription process
8
surface
5
analysis formation
4
formation relaxation
4
relaxation azobenzene
4
polymer gratings
4

Similar Publications

Background: Determining the optimum water absorption capacity of gluten-free flours for an improved breadmaking process has been a challenge because there is no standard method. In the present study, large amplitude oscillatory shear (LAOS) tests were performed to explore the impact of different levels of added water on non-linear viscoelastic response of soy flour dough in comparison to wheat flour dough at a consistency of 500 BU.

Results: Among the LAOS parameters, large strain modulus (G') and large strain rate viscosity (η') were found to better probe the impact of added water amount on non-linear viscoelastic properties of soy flour dough.

View Article and Find Full Text PDF

Yogurt is a popular milk-based product known for its nutritional benefits and effects on the large intestine. However, yogurt production faces challenges like texture, consistency, and syneresis. Hydrocolloids, such as gums and polysaccharides, can enhance yogurt's consistency and rheological properties.

View Article and Find Full Text PDF

Recovering the relaxation spectrum, a fundamental rheological characteristic of polymers, from experiment data requires special identification methods since it is a difficult ill-posed inverse problem. Recently, a new approach relating the identification index directly with a completely unknown real relaxation spectrum has been proposed. The integral square error of the relaxation spectrum model was applied.

View Article and Find Full Text PDF

Evaluation of fatigue performance of asphalt materials based on their relaxation behavior.

Sci Rep

January 2025

Shanxi Province Land Engineering Construction Group Co., Ltd, Xian, 710075, China.

Although the fatigue properties of asphalt materials have been extensively studied, the relationship between the rheological properties and road performance of asphalt mixtures remains underexplored. In this study, we have examined the relaxation properties of asphalt binders through relaxation tests conducted on asphalt and its mastic under different conditions. A repeated stress relaxation-recovery test is designed for assessing both the relaxation and elastic properties, and a set of reasonable test parameters is recommended, thereby establishing a novel test method for measuring the relaxation and elastic behaviors of asphalt.

View Article and Find Full Text PDF

Wound dressing development is an area of active research. Traditional dressings lack antibacterial activity, biocompatibility, and tissue regeneration. Alginate is a heavily investigated polymer employed as wound dressings and can be combined with a wide range of additives.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!