The molecular dynamics of glucose dissolved in heavy water have been investigated at 280 K by the technique of quasielastic neutron scattering. The scattering was described by a dynamic structure factor that accounts for decoupled diffusive jumps and free rotational motions of the glucose molecules. With increasing glucose concentration, the diffusion constant decreases by a factor five and the time between jumps increases considerably. Our observations validate theoretical predictions concerning the impact of concentration on the environment of a glucose molecule and the formation of cages made by neighboring glucose molecules at higher concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.1648302DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
8
dynamics glucose
8
quasielastic neutron
8
neutron scattering
8
glucose molecules
8
glucose
6
glucose solution
4
solution quasielastic
4
scattering study
4
study molecular
4

Similar Publications

Detection of O25b-ST131 clone in extended spectrum beta-lactamase-producing E. coli from urinary tract infections in Mexico.

J Infect Dev Ctries

December 2024

Instituto Nacional de Salud Pública (INSP), Centro de Investigación Sobre Enfermedades Infecciosas (CISEI), Departamento de Diagnóstico Epidemiológico. Cuernavaca, Morelos, México.

Introduction: Escherichia coli has emerged as an important pathogen in urinary tract infections (UTIs) due to the rapid acquisition of antibiotic resistance genes. This enhances the ability of E. coli to colonize and creates therapeutic challenges within the healthcare system.

View Article and Find Full Text PDF

The increasing power and integration of electronic devices have intensified serious heat accumulation, driving the demand for higher intrinsic thermal conductivity in thermal interface materials, such as polydimethylsiloxane (PDMS). Grafting mesogens onto PDMS can enhance its intrinsic thermal conductivity. However, the high stability of the PDMS chain limits the grafting density of mesogens, restricting the improvement in thermal conductivity.

View Article and Find Full Text PDF

CD47, a cell surface protein, serves as a "don't eat me" signal that prevents immune cells from engulfing healthy cells upon its interaction with SIRPα. Cancer cells exploit this mechanism by overexpressing CD47 to evade immune destruction. Blocking the interaction between CD47 and its receptor, SIRPα, is a promising therapeutic strategy.

View Article and Find Full Text PDF

Sea buckthorn is a model of medicine and food homology, but the chemical composition and mechanism of anti-inflammatory effects are limited. In this study, the key components and mechanisms of the anti-inflammatory effects of sea buckthorn were identified based on UPLC-Q-TOF-MS, network pharmacology, molecular docking, molecular dynamics and RAW264.7 cells.

View Article and Find Full Text PDF

Exploring the mechanism of Radix Bupleuri in the treatment of depression combined with SARS-CoV-2 infection through bioinformatics, network pharmacology, molecular docking, and molecular dynamic simulation.

Metab Brain Dis

January 2025

State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510180, China.

Background: Radix Bupleuri is commonly used in treating depression and acute respiratory diseases such as SARS-CoV-2 infection in China. However, its underlying mechanism in treating major depressive disorder combined with SARS-CoV-2 infection remains unclear.

Aim: This study aims to elucidate the pharmacological mechanisms of Radix Bupleuri in treating major depressive disorder combined with SARS-CoV-2 infection, employing bioinformatics, network pharmacology, molecular docking, and dynamic simulation techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!