The electronic structure of azulene molecule has been studied. We have obtained the optimized structures of ground and singlet excited states by using the complete active space self-consistent-field (CASSCF) method, and calculated vertical and 0-0 transition energies between the ground and excited states with second-order Møller-Plesset perturbation theory (CASPT2). The CASPT2 calculations indicate that the bond-equalized C(2v) structure is more stable than the bond-alternating C(s) structure in the ground state. For a physical understanding of electronic structure change from C(2v) to C(s), we have performed the CASSCF calculations of Duschinsky matrix describing mixing of the b(2) vibrational mode between the ground (1A(1)) and the first excited (1B(2)) states based on the Kekule-crossing model. The CASPT2 0-0 transition energies are in fairly good agreement with experimental results within 0.1-0.3 eV. The CASSCF oscillator strengths between the ground and excited states are calculated and compared with experimental data. Furthermore, we have calculated the CASPT2 dipole moments of ground and excited states, which show good agreement with experimental values.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.1631914DOI Listing

Publication Analysis

Top Keywords

excited states
20
ground excited
16
transition energies
12
dipole moments
8
moments ground
8
electronic structure
8
0-0 transition
8
good agreement
8
agreement experimental
8
ground
7

Similar Publications

Plasmon Dynamics in Nanoclusters: Dephasing Revealed by Excited States Evaluation.

J Chem Theory Comput

January 2025

Department of Chemistry, Brandeis University, 415 South Street, Waltham, Massachusetts 02453, United States.

The photocatalytic efficiency of materials such as graphene and noble metal nanoclusters depends on their plasmon lifetimes. Plasmon dephasing and decay in these materials is thought to occur on ultrafast time scales, ranging from a few femtoseconds to hundreds of femtoseconds and longer. Here we focus on understanding the dephasing and decay pathways of excited states in small lithium and silver clusters and in plasmonic states of the π-conjugated molecule anthracene, providing insights that are crucial for interpreting optical properties and photophysics.

View Article and Find Full Text PDF

Extended ligand conjugation enhances luminescent thermometry in [Dy(diketone)(bipyrimidine)] SMMs, as substantiated by crystallographic, photoluminescence, and lifetime decay analyses. This conjugation facilitates rare direct energy transfer from the ligands' singlet state to the metal centers, as evidenced by the nanosecond excited-state lifetime of Dy(III).

View Article and Find Full Text PDF

Photoactivatable metal complexes offer the prospect of novel drugs with low side effects and new mechanisms of action to combat resistance to current therapy. We highlight recent progress in the design of platinum, ruthenium, iridium, gold and other transition metal complexes, especially for applications as anticancer and anti-infective agents. In particular, understanding excited state chemistry related to identification of the bioactive species (excited state metallomics/pharmacophores) is important.

View Article and Find Full Text PDF

Excitation-inhibition (E/I) imbalance is theorized as a key mechanism in the pathophysiology of epilepsy, with ample research focusing on elucidating its cellular manifestations. However, few studies investigate E/I imbalance at the macroscale, whole-brain level, and its microcircuit-level mechanisms and clinical significance remain incompletely understood. Here, the Hurst exponent, an index of the E/I ratio, is computed from resting-state fMRI time series, and microcircuit parameters are simulated using biophysical models.

View Article and Find Full Text PDF

CQHC, a novel colorimetric fluorescent sensor, developed for the selective sensing of ions and well characterised, including SC-XRD. It demonstrated selective sensing for Co, Zn, Hg and F using absorbance titration at 420 nm, 446 nm and the binding constants estimated follows the order F > Co > Hg > Zn. On light of this, molecular logic gate was built for CQHC's selective multi-ion detection.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!