Fluorobenzene-argon ground-state intermolecular potential energy surface.

J Chem Phys

Department of Physical Chemistry, Faculty of Chemistry, University of Santiago de Compostela, E-15782 Santiago de Compostela, Spain.

Published: May 2004

The ground-state intermolecular potential energy surface for the fluorobenzene-argon van der Waals complex is evaluated using the coupled-cluster singles and doubles including connected triple excitations model, with the augmented correlation consistent polarized valence double-zeta basis set extended with a set of 3s3p2d1f1g midbond functions. In the surface minima the Ar atom is located above and below the fluorobenzene plane at a distance of 3.562 A from the fluorobenzene center of mass and at an angle of 6.33 degrees with respect to the axis perpendicular to the fluorobenzene plane. The corresponding binding energy is 391.1 cm(-1). Both these results and the eigenvalues obtained from the potential compare well with the experimental data available.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.1695553DOI Listing

Publication Analysis

Top Keywords

ground-state intermolecular
8
intermolecular potential
8
potential energy
8
energy surface
8
fluorobenzene plane
8
fluorobenzene-argon ground-state
4
surface ground-state
4
surface fluorobenzene-argon
4
fluorobenzene-argon van
4
van der
4

Similar Publications

In this study, we theoretically examined the mechanism of aromaticity induced in closely stacked cofacial π-dimers of 4π antiaromatic molecules, which is called stacked-ring aromaticity, in terms of the effective number of π-electrons ( ) and Baird's rule. High-precision quantum chemical calculations combined with a multi-configurational wavefunction analysis revealed that double-triplet [(TT)] and intermolecular charge-transfer (CT) electron configurations mix substantially in the ground state wavefunctions of cyclobutadiene and Ni(ii) norcorrole dimer models at small stacking distance (). Since the T configuration gives rise to two unpaired electrons, the remaining 4 - 2 π electrons still participate in the intramolecular conjugation, which can be interpreted as the origin of the aromaticity of each monomer.

View Article and Find Full Text PDF

The main purpose of this study is to characterize the nature of the low-energy singlet excited states of the anthranilic acid homodimer (AA) and their changes (symmetry breaking) caused by deformation of the centrosymmetric, ground state structure of AA towards the geometry of the S state. We employ both the correlated ab initio methods (approximate Coupled Clusters Singles and Doubles-CC2 and CASSCF/NEVPT2) as well as the DFT/TDDFT calculations with two exchange-correlation functionals, i.e.

View Article and Find Full Text PDF

Theoretical insight into photodeactivation mechanisms of adenine-uracil and adenine-thymine nucleobase pairs.

Phys Chem Chem Phys

November 2024

Institute of Advanced Materials, Wroclaw University of Science and Technology, Faculty of Chemistry, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland.

In this work, several plausible intra- and intermolecular photoinduced processes of the Watson-Crick base pairs of adenine with uracil (A-U) or thymine (A-T) according to the results of spin component scaling variant of algebraic diagrammatic construction up to the second order [SCS-ADC(2)] calculations are discussed. Although widely explored, these systems lack complete characterization of possible intramolecular relaxation channels perturbed by intermolecular interactions. In particular, we address the still open debate on photodeactivation purine-ring puckering at the C2 or C6-atom position of adenine.

View Article and Find Full Text PDF

C-H Insertion from Isolable Copper Benzylidenes.

J Am Chem Soc

November 2024

Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States.

Despite the utility of copper catalysts for the insertion of carbene moieties into C-H bonds, the copper carbene intermediate often invoked in these transformations has not been isolated. Herein, we describe the synthesis and structural characterization of a series of copper benzylidenes utilizing the sterically encumbered dipyrrin ligand (L)H. These isolated copper carbenes demonstrate intramolecular insertion into the primary C(sp)-H bond of the ligand (L)H and intermolecular insertion into ethereal and allylic C-H bonds.

View Article and Find Full Text PDF

By leveraging the hyperfine interaction between the rotational and nuclear spin degrees of freedom, we demonstrate extensive magnetic control over the electric dipole moments, electric dipolar interactions, and ac Stark shifts of ground-state alkali-dimer molecules such as KRb(X^{1}Σ^{+}). The control is enabled by narrow avoided crossings and the highly ergodic character of molecular eigenstates at low magnetic fields, offering a general and robust way of continuously tuning the intermolecular electric dipolar interaction for applications in quantum simulation, quantum sensing, and dipolar spinor physics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!