Irradiation of an Ar matrix sample containing H2S and CO (or OCS) with an ArF excimer laser at 193 nm yields trans-HSCO (denoted t-HSCO). New lines at 1823.3, 931.6, and 553.3 cm(-1) appear after photolysis and their intensity enhances after annealing; secondary photolysis at 248 nm diminishes these lines and produces OCS and CO. These lines are assigned to C-O stretching, HSC-bending, and C-S stretching modes of t-HSCO, respectively, based on results of 13C-isotopic experiments and theoretical calculations. Theoretical calculations using density-functional theories (B3LYP and PW91PW91) predict four stable isomers of HSCO: t-HSCO, c-HSCO, HC(O)S, and c-HOCS, listed in increasing order of energy. According to calculations with B3LYP/aug-cc-pVTZ, t-HSCO is planar, with bond lengths of 1.34 A (H-S), 1.81 A (S-C), and 1.17 A (C-O), and angles angle HSC congruent with 93.4 degrees and angle SCO congruent with 128.3 degrees; it is more stable than c-HSCO and HC(O)S by approximately 9 kJ mol(-1) and more stable than c-HOCS by approximately 65 kJ mol(-1). Calculated vibrational wave numbers, IR intensities, and 13C-isotopic shifts for t-HSCO fit satisfactorily with experimental results. This new spectral identification of t-HSCO provides information for future investigations of its roles in atmospheric chemistry.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.1648634DOI Listing

Publication Analysis

Top Keywords

isomers hsco
8
theoretical calculations
8
c-hsco hcos
8
t-hsco
7
hsco absorption
4
absorption spectra
4
spectra t-hsco
4
t-hsco solid
4
solid irradiation
4
irradiation matrix
4

Similar Publications

Infrared spectra of two isomers of protonated carbonyl sulfide (HOCS and HSCO) and t-HOCS in solid para-hydrogen.

J Chem Phys

October 2016

Department of Applied Chemistry and Institute of Molecular Science, National Chiao Tung University, 1001 Ta-Hsueh Road, Hsinchu 30010, Taiwan.

We report infrared (IR) spectra of HOCS, HSCO, t-HOCS, and other species produced on electron bombardment of a mixture of carbonyl sulfide (OCS) and para-hydrogen (p-H) during deposition at 3.2 K. After maintenance of the matrix in darkness for 15 h, the intensities of absorption features of HOCS at 2945.

View Article and Find Full Text PDF

Highly accurate, coupled-cluster-based quartic force fields (QFFs) have been employed recently to provide spectroscopic reference for a myriad of molecules. Here, we are extending the same approach to provide vibrational and rotational spectroscopic reference data for the sulfur analogues of HOCO, HSCO, and HOCS, in both the cis and trans conformations as well as the D and (34)S isotopologues of each system. The resulting energies corroborate previous computations showing that trans-HSCO is the lowest-energy isomer for this system.

View Article and Find Full Text PDF

Besides the ν(1) O-H stretching mode at 3435 cm(-1) for HOCS(+), the fundamental vibrational frequencies for this cation and its HSCO(+) isomer have not been determined experimentally. Because these systems are analogues to HOCO(+), a detected interstellar molecule, and are believed to play an important role in reactions of OCS, which has also been detected in the interstellar medium, these cations are of importance to interstellar chemistry and reaction surface studies. This work provides the fundamental vibrational frequencies and spectroscopic constants computed with vibrational perturbation theory (VPT) at second order and the vibrational configuration interaction (VCI) method conjoined with the most accurate quartic force field (QFF) applied to date for these systems.

View Article and Find Full Text PDF

Laboratory detection of the elusive HSCO+ isomer.

J Chem Phys

December 2007

Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, Massachusetts 02138, USA.

The rotational spectrum of protonated carbonyl sulfide, HSCO(+), has now been detected in the centimeter-wave band in a molecular beam by Fourier transform microwave spectroscopy. Rotational and centrifugal distortion constants have been determined from transitions in the K(a)=0 ladder of the normal isotopic species, and DSCO(+) and H(34)SCO(+). HSCO(+) is systematically more abundant by a factor of three than HOCS(+), the isomer obtained by attaching the H(+) to the other end of the molecule, which ab initio calculations long predicted to be higher in energy by 4-5 kcalmol.

View Article and Find Full Text PDF

Spurred by the apparent conflict between ab initio predictions and infrared spectroscopic evidence regarding the relative stability of isomers of protonated carbonyl sulfide, key stationary points on the isomerization surface of HOCS(+) have been examined via systematic extrapolations of ab initio energies. Electron correlation has been accounted for using second-order Møller-Plesset perturbation theory and coupled cluster theory through triple excitations [CCSD, CCSD(T), and CCSDT] in conjunction with the correlation consistent hierarchy of basis sets, cc-pVXZ (X=D,T,Q,5,6). HSCO(+) is predicted to lie lower in energy than HOCS(+) by 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!