An alternative multipolar expansion for intermolecular potential functions.

J Chem Phys

Theoretical Division, Group T-12, Mail Stop B268, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

Published: March 2004

We have derived a new multipolar expansion for intermolecular potential-energy functions with applications in molecular physics, theoretical chemistry, and mathematical physics. The new formulation employs a separation of radial and angular terms with a simple index structure that leads to computational efficiency and ease of physical interpretation. For the case of the Coulomb interaction, we compare the present formulation with two conventional multipole expansions: the Cartesian tensor and the irreducible spherical tensor expansions. The new formalism leads to efficient numerical algorithms that are useful for general applications beyond intermolecular potentials. In addition to the electrostatic Coulomb interaction, we illustrate the formalism with applications to special function theory and a bipolar expansion involved in potential theory.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.1649727DOI Listing

Publication Analysis

Top Keywords

multipolar expansion
8
expansion intermolecular
8
coulomb interaction
8
alternative multipolar
4
intermolecular potential
4
potential functions
4
functions derived
4
derived multipolar
4
intermolecular potential-energy
4
potential-energy functions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!