With several levels of multireference and restricted open-shell single-reference electronic structure theory, optimum structures, relative energetics, and spectroscopic properties of the low-lying (6)Delta, (6)Pi, (4)Delta, (4)Pi, and (4)Sigma(-) states of linear FeNC and FeCN have been investigated using five contracted Gaussian basis sets ranging from Fe[10s8p3d], C/N[4s2p1d] to Fe[6s8p6d3f2g1h], C/N[6s5p4d3f2g]. Based on multireference configuration interaction (MRCISD+Q) results with a correlation-consistent polarized valence quadruple-zeta (cc-pVQZ) basis set, appended with core correlation and relativistic corrections, we propose the relative energies: T(e)(FeNC), (6)Delta(0)<(6)Pi (2300 cm(-1))<(4)Delta (2700 cm(-1))<(4)Pi (4200 cm(-1))<(4)Sigma(-); and T(e)(FeCN), (6)Delta(0)<(6)Pi (1800 cm(-1))<(4)Delta (2500 cm(-1))<(4)Pi (2900 cm(-1))<(4)Sigma(-). The (4)Delta and (4)Pi states have massive multireference character, arising mostly from 11sigma-->12sigma promotions, whereas the sextet states are dominated by single electronic configurations. The single-reference CCSDT-3 (coupled cluster singles and doubles with iterative partial triples) method appears to significantly overshoot the stabilization of the quartet states provided by both static and dynamical correlation. The (4,6)Delta and (4,6)Pi states of both isomers are rather ionic, and all have dipole moments near 5 D. On the ground (6)Delta surface, FeNC is predicted to lie 0.6 kcal mol(-1) below FeCN, and the classical barrier for isocyanide/cyanide isomerization is about 6.5 kcal mol(-1). Our data support the recent spectroscopic characterization by Lei and Dagdigian [J. Chem. Phys. 114, 2137 (2000)] of linear (6)Delta FeNC as the first experimentally observed transition-metal monoisocyanide. Their assignments for the ground term symbol, isotopomeric rotational constants, and the Fe-N omega(3) stretching frequency are confirmed; however, we find rather different structural parameters for (6)Delta FeNC:r(e)(Fe-N)=1.940 A and r(N-C)=1.182 A at the cc-pVQZ MRCISD+Q level. Our results also reveal that the observed band of FeNC originating at 27 236 cm(-1) should have an analog in FeCN near 23 800 cm(-1) of almost equal intensity. Therefore, both thermodynamic stability and absorption intensity factors favor the eventual observation of FeCN via a (6)Pi<--(6)Delta transition in the near-UV.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.1636719DOI Listing

Publication Analysis

Top Keywords

fenc fecn
8
low-lying electronic
4
electronic states
4
states fenc
4
fecn theoretical
4
theoretical journey
4
journey isomerization
4
isomerization quartet/sextet
4
quartet/sextet competition
4
competition levels
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!