Myosin Va and kinesin II motor proteins are concentrated in ribosomal domains (periaxoplasmic ribosomal plaques) of myelinated axons.

J Neurobiol

Department of Cell & Molecular Biology, Facultad de Ciencias, Universidad de la Republica, Montevideo, Uruguay.

Published: August 2004

Periaxoplasmic ribosomal plaques (PARPs) are discrete ribosome-containing domains distributed intermittently along the periphery of axoplasm in myelinated fibers. Thus, they are structural formations in which translational machinery is spatially organized to serve as centers of protein synthesis for local metabolic requirements and perhaps repair as well. Because of evidence that RNA is transported to putative PARP domains, involving both microtubule- and actin-based mechanisms, it was of interest to investigate whether cytoskeletal motor proteins exhibit a nonrandom localization within PARP domains. Axoplasm, from large Mauthner fibers and rat or rabbit spinal ventral nerve root fibers, removed from the myelin sheath in the form of an "axoplasmic whole-mount" was used for this analysis. PARP domains were identified either by specific immunofluorescence of rRNA, ribosomal P antigen, or by nonspecific RNA fluorescence using RNA binding dyes YOYO-1 or POPO-1. A polyclonal antibody (pAb) against the motor domain of myosin Va showed prominent nonrandom immunofluorescence labeling in PARP domains. Similarly, monoclonal antibodies (mAb) against kinesin KIF3A and a pan-specific antikinesin (mAb IBII) also showed a preponderant immunofluorescence in PARP domains. On the other hand, H2, a mAb antikinesin KIF5A, exhibited only random immunofluorescence labeling in axoplasm, as was also the case with pAb antidynein heavy chain immunofluorescence. Several possible explanations for these findings are considered, primary among which is targeted trafficking of translational machinery that results in local accumulation of motor proteins. Additional possibilities are trafficking functions intrinsic to the domain, and/or functions that govern dynamic organizational properties of PARPs.

Download full-text PDF

Source
http://dx.doi.org/10.1002/neu.20015DOI Listing

Publication Analysis

Top Keywords

parp domains
20
motor proteins
12
periaxoplasmic ribosomal
8
ribosomal plaques
8
translational machinery
8
immunofluorescence labeling
8
domains
7
parp
5
immunofluorescence
5
myosin kinesin
4

Similar Publications

Efficacy of PARPi re-maintenance therapy for recurrent ovarian cancer.

Front Oncol

January 2025

State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China.

Objective: The current clinical data regarding the re-administration of PARPi maintenance therapy in platinum sensitive recurrent ovarian cancer (PSROC) is limited. This study aims to investigate the efficacy and associated factors of PARPi re-maintenance therapy in PSROC patients in China.

Methods: In this study, there were 201 patients with PSROC who had received maintenance therapy previously and achieved complete or partial response after platinum-based chemotherapy upon recurrence.

View Article and Find Full Text PDF

CHD6 has poly(ADP-ribose)- and DNA-binding domains and regulates PARP1/2-trapping inhibitor sensitivity via abasic site repair.

Nat Commun

January 2025

Robson DNA Science Centre, Charbonneau Cancer Institute, Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada.

To tolerate oxidative stress, cells enable DNA repair responses often sensitive to poly(ADP-ribose) (PAR) polymerase 1 and 2 (PARP1/2) inhibition-an intervention effective against cancers lacking BRCA1/2. Here, we demonstrate that mutating the CHD6 chromatin remodeler sensitizes cells to PARP1/2 inhibitors in a manner distinct from BRCA1, and that CHD6 recruitment to DNA damage requires cooperation between PAR- and DNA-binding domains essential for nucleosome sliding activity. CHD6 displays direct PAR-binding, interacts with PARP-1 and other PAR-associated proteins, and combined DNA- and PAR-binding loss eliminates CHD6 relocalization to DNA damage.

View Article and Find Full Text PDF

Poly(ADP-ribose) polymerase-1 (PARP-1) is the key enzyme among other PARPs for post-translational modification of DNA repair proteins. It has four functional domains for DNA-binding, automodification and enzymatic activity. PARP-1 participates in poly-ADP-ribosylation of itself or other proteins during DNA damage response.

View Article and Find Full Text PDF

The drug combination is an attractive approach for cancer treatment. PARP and kinase inhibitors have recently been explored against cancer cells, but their combination has not been investigated comprehensively. In this study, we used various drug combination databases to build ML models for drug combinations against brain cancer cells.

View Article and Find Full Text PDF

Although ovarian endometrioid carcinoma (OEC), frequently associated with endometrial endometrioid carcinoma (EEC), is often diagnosed at an early stage, the prognosis remains poor. The development of new, effective drugs to target these cancers is highly desirable. The bromodomain and extra-terminal domain (BET) family proteins serve a role in regulating transcription by recognizing histone acetylation, which is implicated in several types of cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!