A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Platelet factor 4/CXCL4 induces phagocytosis and the generation of reactive oxygen metabolites in mononuclear phagocytes independently of Gi protein activation or intracellular calcium transients. | LitMetric

Platelet factor 4 (PF-4), a platelet-derived CXC chemokine, is known to prevent human monocytes from apoptosis and to promote differentiation of these cells into HLA-DR(-) macrophages. In this study, we investigated the role of PF-4 in the control of acute monocyte proinflammatory responses involved in the direct combat of microbial invaders. We show that PF-4 increases monocyte phagocytosis and provokes a strong formation of oxygen radicals but lacks a chemotactic activity in these cells. Compared with FMLP, PF-4-induced oxidative burst was later in its onset but was remarkably longer in its duration (lasting for up to 60 min). Furthermore, in PF-4-prestimulated cells, FMLP- as well as RANTES-induced burst responses became synergistically enhanced. As we could show, PF-4-mediated oxidative burst in monocytes does not involve Gi proteins, elevation of intracellular free calcium concentrations, or binding to CXCR3B, a novel PF-4 receptor recently discovered on endothelial cells. Moreover, we found that PF-4 acts on macrophages in a dual manner. On the one hand, very similar to GM-CSF or M-CSF, PF-4 treatment of monocytes generates macrophages with a high capacity for unspecific phagocytosis. On the other hand, short term priming of GM-CSF-induced human macrophages with PF-4 substantially increases their capability for particle ingestion and oxidative burst. A comparable effect was also observed in murine bone marrow-derived macrophages, indicating cross-reactivity of human PF-4 between both species. Taken together, PF-4 may play a crucial role in the induction and maintenance of an unspecific immune response.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.173.3.2060DOI Listing

Publication Analysis

Top Keywords

oxidative burst
12
pf-4
9
platelet factor
8
pf-4 increases
8
macrophages
5
factor 4/cxcl4
4
4/cxcl4 induces
4
induces phagocytosis
4
phagocytosis generation
4
generation reactive
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!