During hemostasis the zymogen factor X (FX) is converted into its enzymatically active form factor Xa by the intrinsic FX-activating complex. This complex consists of the protease factor IXa (FIXa) that assembles, together with its cofactor, factor VIIIa, on a phospholipid surface. We have studied the functional properties of a FIXa-specific monoclonal antibody, 224AE3, which has the potential to enhance intrinsic FX activation. Binding of the antibody to FIXa improved the catalytic properties of the intrinsic FX-activating complex in two ways: (i) factor VIIIa bound to the FIXa-antibody complex with a more than 18-fold higher affinity than to FIXa, and (ii) the turnover number (kcat) of the enzyme complex increased 2- to 3-fold whereas the Km for FX remained unaffected. The ability of 224AE3 to increase the FXa-generation potential (called the "booster effect") was confirmed in factor VIII (FVIII)-depleted plasma, which was supplemented with different amounts of recombinant FVIII. In the presence of antibody 224AE3 the coagulant activity was increased 2-fold at physiological FVIII concentration and up to 15-fold at low FVIII concentrations. The booster effect that we describe demonstrates the ability of antibodies to function as an additional cofactor in an enzymatic reaction and might open up a new principle for improving the treatment of hemophilia.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M405966200DOI Listing

Publication Analysis

Top Keywords

factor
8
intrinsic fx-activating
8
fx-activating complex
8
factor viiia
8
antibody 224ae3
8
complex
6
antibody
4
antibody specific
4
specific coagulation
4
coagulation factor
4

Similar Publications

Burns carry a large surface area, varying in shapes and depths, and an elevated risk of infection. Regardless of the underlying etiology, burns pose significant medical challenges and a high mortality rate. Given the limitations of current therapies, tissue-engineering-based treatments for burns are inevitable.

View Article and Find Full Text PDF

Determination of Site Occupancy in the M-Pd-Zn (M = Cu, Ag, and Au) γ-Brass Phase by CALculation of PHAse Diagrams Modeling and Rietveld Refinement.

Inorg Chem

January 2025

Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.

The Pd-Zn γ-brass phase provides exciting opportunities for synthesizing site-isolated catalysts with precisely controlled Pd active site ensembles. Introducing a third metallic element into the γ-brass lattice further perturbs the catalytic active site ensembles. Here, we introduce coinage metallic elements M (M = Cu, Ag, and Au) into the Pd-Zn γ-brass phase and investigate the site occupation factors of each element in the γ-brass lattice.

View Article and Find Full Text PDF

In the context of regenerative medicine, the design of scaffolds to possess excellent osteogenesis and appropriate mechanical properties has gained significant attention in bone tissue engineering. In this review, we categorized materials into metallic, inorganic, nonmetallic, organic polymer, and composite materials. This review provides a more integrated and multidimensional analysis of scaffold design for bone tissue engineering.

View Article and Find Full Text PDF

MXene Hollow Microsphere-Boosted Nanocomposite Electrodes for Thermocells with Enhanced Thermal Energy Harvesting Capability.

ACS Nano

January 2025

Guangdong Provincial Key Laboratory of New Energy Materials Service Safety, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.

Thermal energy, constantly being produced in natural and industrial processes, constitutes a significant portion of energy lost through various inefficiencies. Employing the thermogalvanic effect, thermocells (TECs) can directly convert thermal energy into electricity, representing a promising energy-conversion technology for efficient, low-grade heat harvesting. However, the use of high-cost platinum electrodes in TECs has severely limited their widespread adoption, highlighting the need for more cost-effective alternatives that maintain comparable thermoelectrochemical performance.

View Article and Find Full Text PDF

Recurrent acute pancreatitis (RAP) affects 15-36% of children with acute pancreatitis (AP) and may progress to chronicity. To determine the etiology and evolution of RAP, a descriptive retrospective cohort study was conducted in patients aged 1-18 years. Twelve patients with RAP were included out of 79 with AP, and demographic, etiological, clinical, analytical, and imaging data were collected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!