Somatosensory cell response to an auditory cue in a haptic memory task.

Behav Brain Res

Department of Neurosurgery and Zanvyl Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, MD 21287, USA.

Published: August 2004

Neurons in the monkey's anterior parietal cortex (Brodmann's areas 3a, 3b, 1, and 2) have been reported to retain information from a visual cue that has been associated with a tactile stimulus in a haptic memory task. This cross-modal transfer indicates that neurons in somatosensory cortex can respond to non-tactile stimuli if they are associated with tactile information needed for performance of the task. We hypothesized that neurons in somatosensory cortex would be activated by other non-tactile stimuli signaling the haptic movements--of arm and hand--that the task required. We found such cells in anterior parietal areas. They reacted with short-latency activity changes to an auditory signal (a click) that prompted those movements. Further, some of those cells changed their discharge in temporal correlation with the movements themselves, with the touch of the test objects, and with the short-term memory of those objects for subsequent tactile discrimination. These findings suggest that cells in the somatosensory cortex participate in the behavioral integration of auditory stimuli with other sensory stimuli and with motor acts that are associated with those stimuli.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbr.2003.12.024DOI Listing

Publication Analysis

Top Keywords

somatosensory cortex
12
haptic memory
8
memory task
8
anterior parietal
8
associated tactile
8
neurons somatosensory
8
non-tactile stimuli
8
stimuli
5
somatosensory
4
somatosensory cell
4

Similar Publications

Traditional tactile brain-computer interfaces (BCIs), particularly those based on steady-state somatosensory-evoked potentials, face challenges such as lower accuracy, reduced bit rates, and the need for spatially distant stimulation points. In contrast, using transient electrical stimuli offers a promising alternative for generating tactile BCI control signals: somatosensory event-related potentials (sERPs). This study aimed to optimize the performance of a novel electrotactile BCI by employing advanced feature extraction and machine learning techniques on sERP signals for the classification of users' selective tactile attention.

View Article and Find Full Text PDF

Electroacupuncture Mitigates TRPV1 Overexpression in the Central Nervous System Associated with Fibromyalgia in Mice.

Life (Basel)

December 2024

College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan.

Background: Fibromyalgia (FM) is characterized by chronic pain, significantly affecting the quality of life and functional capabilities of patients. In addition to pain, patients may experience insomnia, chronic fatigue, depression, anxiety, and headaches, further complicating their overall well-being. The Transient Receptor Potential Vanilloid 1 (TRPV1) receptor responds to various noxious stimuli and plays a key role in regulating pain sensitivity and inflammation.

View Article and Find Full Text PDF

Unlabelled: Evaluating tissue microstructure and membrane integrity in the living human brain through diffusion-water exchange imaging is challenging due to requirements for a high signal-to-noise ratio and short diffusion times dictated by relatively fast exchange processes. The goal of this work was to demonstrate the feasibility of imaging of tissue micro-geometries and water exchange within the brain gray matter using the state-of-the-art Connectome 2.0 scanner equipped with an ultra-high-performance gradient system (maximum gradient strength=500 mT/m, maximum slew rate=600 T/m/s).

View Article and Find Full Text PDF

Brain-resident macrophages, microglia, have been proposed to have an active role in synaptic refinement and maturation, influencing plasticity and circuit-level connectivity. Here we show that several neurodevelopmental processes previously attributed to microglia can proceed without them. Using a genetically modified mouse that lacks microglia (Csf1r), we find that intrinsic properties, synapse number and synaptic maturation are largely normal in the hippocampal CA1 region and somatosensory cortex at stages where microglia have been implicated.

View Article and Find Full Text PDF

Differential neurogenic patterns underlie the formation of primary and secondary areas in the developing somatosensory cortex.

Cereb Cortex

January 2025

Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan.

Article Synopsis
  • The cerebral cortex has organized areas that are connected by axons, but how neurogenesis (the development of new neurons) is coordinated between these areas isn’t well understood.
  • The somatosensory cortex is important for processing touch and receives sensory information through the thalamus to its primary and secondary areas.
  • Our study found that neuron production in the secondary somatosensory cortex (S2) happens before the primary somatosensory cortex (S1) and ends sooner, with a decrease in upper-layer neurons in S2 due to a change at the surface layer, suggesting a specific mechanism that organizes the development of these cortical areas.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!