Neurons in the monkey's anterior parietal cortex (Brodmann's areas 3a, 3b, 1, and 2) have been reported to retain information from a visual cue that has been associated with a tactile stimulus in a haptic memory task. This cross-modal transfer indicates that neurons in somatosensory cortex can respond to non-tactile stimuli if they are associated with tactile information needed for performance of the task. We hypothesized that neurons in somatosensory cortex would be activated by other non-tactile stimuli signaling the haptic movements--of arm and hand--that the task required. We found such cells in anterior parietal areas. They reacted with short-latency activity changes to an auditory signal (a click) that prompted those movements. Further, some of those cells changed their discharge in temporal correlation with the movements themselves, with the touch of the test objects, and with the short-term memory of those objects for subsequent tactile discrimination. These findings suggest that cells in the somatosensory cortex participate in the behavioral integration of auditory stimuli with other sensory stimuli and with motor acts that are associated with those stimuli.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbr.2003.12.024 | DOI Listing |
Sensors (Basel)
December 2024
School of Electrical Engineering, University of Belgrade, 11000 Belgrade, Serbia.
Traditional tactile brain-computer interfaces (BCIs), particularly those based on steady-state somatosensory-evoked potentials, face challenges such as lower accuracy, reduced bit rates, and the need for spatially distant stimulation points. In contrast, using transient electrical stimuli offers a promising alternative for generating tactile BCI control signals: somatosensory event-related potentials (sERPs). This study aimed to optimize the performance of a novel electrotactile BCI by employing advanced feature extraction and machine learning techniques on sERP signals for the classification of users' selective tactile attention.
View Article and Find Full Text PDFLife (Basel)
December 2024
College of Chinese Medicine, Graduate Institute of Acupuncture Science, China Medical University, Taichung 40402, Taiwan.
Background: Fibromyalgia (FM) is characterized by chronic pain, significantly affecting the quality of life and functional capabilities of patients. In addition to pain, patients may experience insomnia, chronic fatigue, depression, anxiety, and headaches, further complicating their overall well-being. The Transient Receptor Potential Vanilloid 1 (TRPV1) receptor responds to various noxious stimuli and plays a key role in regulating pain sensitivity and inflammation.
View Article and Find Full Text PDFUnlabelled: Evaluating tissue microstructure and membrane integrity in the living human brain through diffusion-water exchange imaging is challenging due to requirements for a high signal-to-noise ratio and short diffusion times dictated by relatively fast exchange processes. The goal of this work was to demonstrate the feasibility of imaging of tissue micro-geometries and water exchange within the brain gray matter using the state-of-the-art Connectome 2.0 scanner equipped with an ultra-high-performance gradient system (maximum gradient strength=500 mT/m, maximum slew rate=600 T/m/s).
View Article and Find Full Text PDFNat Neurosci
January 2025
Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK.
Brain-resident macrophages, microglia, have been proposed to have an active role in synaptic refinement and maturation, influencing plasticity and circuit-level connectivity. Here we show that several neurodevelopmental processes previously attributed to microglia can proceed without them. Using a genetically modified mouse that lacks microglia (Csf1r), we find that intrinsic properties, synapse number and synaptic maturation are largely normal in the hippocampal CA1 region and somatosensory cortex at stages where microglia have been implicated.
View Article and Find Full Text PDFCereb Cortex
January 2025
Department of Biology, Faculty of Education and Integrated Arts and Sciences, Waseda University, 2-2 Wakamatsu-cho, Shinjuku-ku, 162-8480, Tokyo, Japan.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!