Poly(vinyl alcohol) membranes for adhesion prevention.

J Biomed Mater Res B Appl Biomater

Aesculap AG & Co. KG, Tuttlingen, Germany.

Published: August 2004

The abnormal joining of anatomic structures after abdominal and pelvic surgery can lead to such major complications as bowel obstruction or infertility. Poly(vinyl alcohol) (PVA) membranes and hydrogels were placed over the injured tissue to act as a physical barrier and prevent such adhesions from occurring in a rabbit sidewall model. The membranes were sutured into place to prevent their slipping or curling on the moist tissue. Various in vitro experiments (including testing for swelling and mechanical strength) were conducted in order to better understand the behavior of these membranes in the wound. The results showed that both the PVA membranes and PVA hydrogels significantly reduced the number and severity of adhesions in the rabbit sidewall model, and even indicated a distinct improvement over SEPRAFILM as antiadhesion barriers. Contact-angle measurements were taken in order to evaluate the surface properties of the membranes and hydrogels. Three approaches were taken to render the membranes more bioadhesive, and forego the need for future additional suturing: imprinting a texture onto the membrane, coating the membrane with carboxy methyl cellulose (CMC), and producing bi-layered, porous PVA membranes through a process of lyophilization. Though the surface of the PVA hydrogels is more hydrophilic than the surface of the PVA membranes, neither would adhere untreated to moist tissue. However, all three approaches aimed at improving their bioadhesion yielded excellent results and demonstrated that PVA could indeed be considered a viable method of adhesion prevention.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jbm.b.30007DOI Listing

Publication Analysis

Top Keywords

pva membranes
16
membranes
9
polyvinyl alcohol
8
adhesion prevention
8
membranes hydrogels
8
rabbit sidewall
8
sidewall model
8
moist tissue
8
pva hydrogels
8
three approaches
8

Similar Publications

Membranes have extensive applications in catalysis, separation, antimicrobial activities, and sensing. However, developing a simple and environmentally friendly method for preparing membranes remains challenging. Here, we report a novel strategy for fabricating self-standing inorganic-organic composite films at the miscible liquid/liquid interface using a soft spray technique.

View Article and Find Full Text PDF

The adhesion mechanism of mucoadhesive tablets with dissimilar chain flexibility on viscoelastic hydrogels.

Mater Today Bio

February 2025

Department of Physical Chemistry and Materials Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111, Budapest, Hungary.

Mucosal membranes with strong variability in their viscoelastic properties line numerous organs and are often targeted by mucoadhesive formulations, e.g., highly swellable hydroxypropylmethylcellulose (HPMC) and slightly cross-linked poly(acrylic acid) (PAA) tablets.

View Article and Find Full Text PDF

The goal of this research is to develop and characterize low-cost NHI doped polyvinyl alcohol (PVA)-4-ethyl-4-methylmorpholiniumbromide (ionic liquid) anion exchange membranes (AEM) and its application for membrane cathode assembly. Physical characterization like FTIR, POM, and XRD notified the functional groups, basic structure, and amorphosity of the produced membrane, and it was employed in single-chambered microbial fuel cells (sMFCs) as a separator. The membranes in terms of oxygen diffusion, proton conductivity, and ion exchange capabilities were evaluated.

View Article and Find Full Text PDF

Oil spills and industrial oily wastewater pose serious threats to the environment. A series of modified membranes with special wettability have been widely used for separating oil/water mixtures and emulsions. However, these membranes still face challenges such as the detachment of the modified coatings and membrane fouling.

View Article and Find Full Text PDF

Establishing a Three-Dimensional Coculture Module of Epithelial Cells Using Nanofibrous Membranes.

J Vis Exp

December 2024

Department of Pharmacology, School of Medicine, Ajou University; 3D Immune System Imaging Core Center, Ajou University;

Technical hurdles in a culture of epithelial cells include dedifferentiation and loss of function. Biomimetic three-dimensional (3D) cell culture methods can enhance cell culture efficiency. This study introduces an advanced two-layered culture system intended to cultivate epithelial cells as tissue-like layers with the culture of fibroblasts within a 3D environment.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!