The synchrotron light source designed and constructed at the LNLS is composed of a 1.37 GeV electron storage ring and a 120 MeV linac for low-energy injection. The storage ring has been commissioned and has already reached the designed electron-beam energy, current and emittance. The electron lifetime is now 6 h at 60 mA, and is steadily increasing. Seven beamlines (TGM, SGM, SXS, XAFS, XRD, SAXS, PCr) have been constructed in parallel with the electron accelerators and are at present in operation. Beam time was allocated to 129 approved research projects for the second semester of 1997. A number of them are currently under way.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1107/S0909049597018293 | DOI Listing |
Biomolecules
December 2024
Department of Life and Environmental Sciences, Marche Polytechnic University, I-60131 Ancona, Italy.
The misfolding and amyloid aggregation of proteins have been attracting scientific interest for a few decades, due to their link with several diseases, particularly neurodegenerative diseases. Proteins can assemble and result in insoluble aggregates that, together with intermediate oligomeric species, modify the extracellular environment. Many efforts have been and are devoted to the search for cosolvents and cosolutes able to interfere with amyloid aggregation.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Physics, Stockholm University, 10691, Stockholm, Sweden.
The surface chemistry of the Fischer-Tropsch catalytic reaction over Co has still several unknows. Here, we report an in-situ X-ray photoelectron spectroscopy study of Co and Co( ), and in-situ high energy surface X-ray diffraction of Co during the Fischer-Tropsch reaction at 0.15 bar - 1 bar and 406 K - 548 K in a H/CO gas mixture.
View Article and Find Full Text PDFAcc Chem Res
January 2025
Institute of Energy: Sustainability, Environment and Equity (I:SEE), State University of New York at Stony Brook, Stony Brook, New York 11794, United States.
ConspectusLithium-ion batteries are recognized as an important electrochemical energy storage technology due to their superior volumetric and gravimetric energy densities. Graphite is widely used as the negative electrode, and its adoption enabled much of the modern portable electronics technology landscape. However, developing markets, such as electric vehicles and grid-scale storage, have increased demands, including higher energy content and a diverse materials supply chain.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
Shanghai Key Laboratory of High Temperature Superconductors, Institute for Quantum Science and Technology, Department of Physics, Shanghai University, Shanghai 200444, China. Electronic address:
Phase engineering strategies in two-dimensional transition metal dichalcogenides (2D-TMDs) have garnered significant attention due to their potential applications in electronics, optoelectronics, and energy storage. Various methods, including direct synthesis, pressure control, and chemical doping, have been employed to manipulate structural transitions in 2D-TMDs. Metal intercalation emerges as an effective technique to modulate phase transition dynamics by inserting external atoms or ions between the layers of 2D-TMDs, altering their electronic structure and physical properties.
View Article and Find Full Text PDFPhys Chem Chem Phys
January 2025
CELLS-ALBA Synchrotron Light Facility, Cerdanyola del Vallés, 08290, Barcelona, Spain.
Magnesium and calcium carbonate minerals are significant reservoirs of Earth's carbon and understanding their behavior under different conditions is crucial for elucidating the mechanisms of deep carbon storage. Huntite, MgCa(CO), is one of the two stable calcium magnesium carbonate phases, together with dolomite. The distinctive cation coordination environment of Ca atoms compared to calcite-type and dolomite structures makes huntite a comparatively less dense phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!