The extension of a new theory on the X-ray energy response of semiconductor detectors is carried out to characterize the X-ray response of a multichannel semiconductor detector fabricated on one silicon wafer. Recently, these multichannel detectors have been widely utilized for position-sensitive observations in various research fields, including synchrotron radiation research and fusion-plasma investigations. This article represents the verification of the physics essentials of a proposed theory on the X-ray response of semiconductor detectors. The three-dimensional charge-diffusion effects on the adjoining detector-channel signals are experimentally demonstrated at the Photon Factory for two types of multichannel detectors. These findings are conveniently applicable for measuring diffusion lengths for industrial requirements.

Download full-text PDF

Source
http://dx.doi.org/10.1107/S0909049597017524DOI Listing

Publication Analysis

Top Keywords

synchrotron radiation
8
theory x-ray
8
response semiconductor
8
semiconductor detectors
8
x-ray response
8
multichannel detectors
8
methods semiconductor
4
semiconductor charge-diffusion-length
4
charge-diffusion-length measurements
4
measurements synchrotron
4

Similar Publications

Vertical Quantum Confinement in Bulk MoS.

ACS Nano

January 2025

Dto. de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain.

We experimentally observe quantum confinement states in bulk MoS by using angle-resolved photoemission spectroscopy (ARPES). The band structure at the Γ̅ point reveals quantum well states (QWSs) linked to vertical quantum confinement of the electrons, confirmed by the absence of dispersion in and a strong intensity modulation with the photon energy. Notably, the binding energy dependence of the QWSs versus does not follow the quadratic dependence of a two-dimensional electron gas.

View Article and Find Full Text PDF

The incorporation of polymeric insulators has led to notable achievements in the field of organic semiconductors. By altering the blending concentration, polymeric insulators exhibit extensive capabilities in regulating molecular configuration, film crystallinity, and mitigation of defect states. However, current research suggests that the improvement in such physical properties is primarily attributed to the enhancement of thin film morphology, an outcome that seems to be an inevitable consequence of incorporating insulators.

View Article and Find Full Text PDF

The intentional manipulation of carrier characteristics serves as a fundamental principle underlying various energy-related and optoelectronic semiconductor technologies. However, achieving switchable and reversible control of the polarity within a single material to design optimized devices remains a significant challenge. Herein, we successfully achieved dramatic reversible p-n switching during the semiconductor‒semiconductor phase transition in BiI via pressure, accompanied by a substantial improvement in their photoelectric properties.

View Article and Find Full Text PDF

Silver chalcogenides exhibit exceptional transport properties but face structural instability at high temperatures, limiting their practical applications. Using AgTe as a model, it is confirm that silver whisker growth above the phase transition renders AgTe unsuitable for thermoelectric applications. Here, the whisker growth mechanism is investigated and propose an inhibition strategy, overcoming a major obstacle in using silver chalcogenides.

View Article and Find Full Text PDF

In this study, we investigate structural disorder and its implications in metal cluster (MC)-based compounds, specifically focusing on Cs[{MoX}X] (X = Cl and Br). Utilizing synchrotron radiation X-ray diffraction, Fourier transform infrared spectroscopy, and luminescence measurements, we examined the incorporation of water molecules into these compounds and their effects on the crystal structure and optical properties. Our findings reveal that the presence of water molecules induces the lattice disorder, particularly the displacement of Cs atoms.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!