Substantial evidence indicates that mitochondria are a major checkpoint in several pathways leading to neuronal cell death, but discerning critical propagation stages from downstream consequences has been difficult. The mitochondrial permeability transition (mPT) may be critical in stroke-related injury. To address this hypothesis, identify potential therapeutics, and screen for new uses for established drugs with known toxicity, 1,040 FDA-approved drugs and other bioactive compounds were tested as potential mPT inhibitors. We report the identification of 28 structurally related drugs, including tricyclic antidepressants and antipsychotics, capable of delaying the mPT. Clinically achievable doses of one drug in this general structural class that inhibits mPT, promethazine, were protective in both in vitro and mouse models of stroke. Specifically, promethazine protected primary neuronal cultures subjected to oxygen-glucose deprivation and reduced infarct size and neurological impairment in mice subjected to middle cerebral artery occlusion/reperfusion. These results, in conjunction with new insights provided to older studies, (a) suggest a class of safe, tolerable drugs for stroke and neurodegeneration; (b) provide new tools for understanding mitochondrial roles in neuronal cell death; (c) demonstrate the clinical/experimental value of screening collections of bioactive compounds enriched in clinically available agents; and (d) provide discovery-based evidence that mPT is an essential, causative event in stroke-related injury.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2212009 | PMC |
http://dx.doi.org/10.1084/jem.20032053 | DOI Listing |
J Neuroinflammation
January 2025
Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, USA.
The thrombolytic protease tissue plasminogen activator (tPA) is expressed in the CNS, where it regulates diverse functions including neuronal plasticity, neuroinflammation, and blood-brain-barrier integrity. However, its role in different brain regions such as the substantia nigra (SN) is largely unexplored. In this study, we characterize tPA expression, activity, and localization in the SN using a combination of retrograde tracing and β-galactosidase tPA reporter mice.
View Article and Find Full Text PDFBMC Med Genomics
January 2025
Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, UK.
Amyotrophic lateral sclerosis (ALS) lacks a specific biomarker, but is defined by relatively selective toxicity to motor neurons (MN). As others have highlighted, this offers an opportunity to develop a sensitive and specific biomarker based on detection of DNA released from dying MN within accessible biofluids. Here we have performed whole genome bisulfite sequencing (WGBS) of iPSC-derived MN from neurologically normal individuals.
View Article and Find Full Text PDFJ Headache Pain
January 2025
Sensory Biology Unit, Translational Research Center, Rigshospitalet, Glostrup, Denmark.
Objective: The neuropeptide calcitonin gene-related peptide (CGRP) has been established to be a key signaling molecule in migraine, but little is known about the differences between the two isoforms: αCGRP and βCGRP. Previous studies have been hampered by their close similarity, making the development of specific antibodies nearly impossible. In this study we sought to test the hypothesis that αCGRP and βCGRP localize differently within the neurons of the mouse trigeminal ganglion (TG), using αCGRP knock out (KO) animals.
View Article and Find Full Text PDFCommun Biol
January 2025
Mitchell Center for Neurodegenerative Diseases, University of Texas Medical Branch, Galveston, TX, USA.
Aggregation of microtubule-associated tau protein is a distinct hallmark of several neurodegenerative disorders such as Alzheimer's disease (AD), dementia with Lewy bodies (DLB), and progressive supranuclear palsy (PSP). Tau oligomers are suggested to be the primary neurotoxic species that initiate aggregation and propagate prion-like structures. Furthermore, different diseases are shown to have distinct structural characteristics of aggregated tau, denoted as polymorphs.
View Article and Find Full Text PDFNPJ Parkinsons Dis
January 2025
Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, 20852, USA.
ΑBSTRACT: In Parkinson's disease (PD), Lewy pathology deposits in the cerebral cortex, but how the pathology disrupts cortical circuit integrity and function remains poorly understood. To begin to address this question, we injected α-synuclein (αSyn) preformed fibrils (PFFs) into the dorsolateral striatum of mice to seed αSyn pathology in the cortical cortex and induce degeneration of midbrain dopaminergic neurons. We reported that αSyn aggregates accumulate in the motor cortex in a layer- and cell-subtype-specific pattern.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!