To learn more about the targets of Cn (Cn) and calcium/calmodulin-dependent protein kinase in cardiac muscle, we investigated their actions in cultured cardiac myocytes and the hearts of mice in vivo. Adenoviral-mediated expression of constitutively active forms of either pathway induced expression of peroxisome proliferator-activated receptor gamma coactivator 1alpha, a transcriptional coactivator involved in the control of multiple cellular energy metabolic pathways in cardiac myocytes. Transcriptional profiling studies demonstrated that Cn and calcium/calmodulin-dependent protein kinase activate distinct but overlapping metabolic gene regulatory programs. Expression of the nuclear receptor, peroxisome proliferator-activated receptor alpha, was markedly increased by Cn, but not calcium/calmodulin-dependent protein kinase, providing one mechanism whereby cellular fatty acid utilization genes are selectively activated by Cn. Transfection experiments demonstrated that Cn directly activates the mouse peroxisome proliferator-activated receptor alpha gene promoter. Co-transfection "add-back" experiments demonstrated that the transcription factors, myocyte enhancer factors 2C or 2D, were sufficient to confer Cn-mediated activation of the peroxisome proliferator-activated receptor alpha gene. Cn was also shown to directly activate a known peroxisome proliferator-activated receptor alpha target, muscle-type carnitine palmitoyltransferase I, providing a second mechanism by which Cn activates genes of cellular fatty acid utilization. Lastly, the gene expression of peroxisome proliferator-activated receptor gamma coactivator 1alpha and peroxisome proliferator-activated receptor alpha was reduced in the hearts of mice with cardiac-specific ablation of the Cn regulatory subunit. These data support a role for calcium-triggered signaling pathways in the regulation of cardiac energetics and identify pathway-specific control of metabolic targets.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1074/jbc.M403649200 | DOI Listing |
Cancer Lett
January 2025
Advanced Medical Research Institute, Qilu College of Medicine, Shandong University, Jinan, 250012, China. Electronic address:
Dysregulated lipid metabolism is linked to tumor progression. In this study, we identified Niemann-Pick C1-like 1 (NPC1L1) as a downstream effector of PKM2. In breast cancer cells, PKM2 knockout (KO) enhanced NPC1L1 expression while downregulating peroxisome proliferator-activated receptor α (PPARα) signaling pathway.
View Article and Find Full Text PDFMolecules
January 2025
Department of Pharmaceutical Biology, Leipzig University, Johannisallee 21, 04103 Leipzig, Germany.
L. is known in Europe for its cardioactivity-also in interrelation with known risk factors of the metabolic syndrome-just as Houtt. in East Asia; however, up to now, no active constituents could be identified.
View Article and Find Full Text PDFMolecules
January 2025
Department of Pharmacology, Animal Physiology Biochemistry and Chemistry, Faculty of Veterinary Medicine, Trakia University, 6000 Stara Zagora, Bulgaria.
The interpretation of the biochemistry of immune metabolism could be considered an attractive scientific field of biomedicine research. In this review, the role of glycolysis in macrophage polarization is discussed together with mitochondrial metabolism in cancer cells. In the first part, the focus is on the Warburg effect and redox metabolism during macrophage polarization, cancer development, and management of the immune response by the cancer cells.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Medical Research Core Facility and Platforms (MRCFP)-Drug Discovery Platform, King Abdullah International Medical Research Center (KAIMRC), King Saud Bin Abdulaziz University for Health Sciences, Ministry of National Guard Health Affairs (MNGHA), Riyadh 11481, Saudi Arabia.
Peroxisome proliferator-activated receptors (PPARs) are considered good drug targets for breast cancer because of their involvement in fatty acid metabolism that induces cell proliferation. In this study, we used the KAIMRC1 breast cancer cell line. We showed that the PPARE-Luciferase reporter gets highly activated without adding any exogenous ligand when PPAR alpha is co-transfected, and the antagonist GW6471 can inhibit the activity.
View Article and Find Full Text PDFBiomolecules
January 2025
Department of Nutritional Sciences, Auburn University, Auburn, AL 36849, USA.
Obesity is characterized by the enlargement of adipose tissue due to an increased calorie intake exceeding the body's energy expenditure. Changes in the size of adipose tissue can lead to harmful consequences, with excessive fat accumulation resulting in adipocyte hypertrophy and promoting metabolic dysfunction. These adiposity-associated pathologies can be influenced by dietary components and their potential health benefits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!