The interaction of calmodulin with its target proteins is known to affect the kinetics and affinity of Ca(2+) binding to calmodulin. Based on thermodynamic principles, proteins that bind to Ca(2+)-calmodulin should increase the affinity of calmodulin for Ca(2+), while proteins that bind to apo-calmodulin should decrease its affinity for Ca(2+). We quantified the effects on Ca(2+)-calmodulin interaction of two neuronal calmodulin targets: RC3, which binds both Ca(2+)- and apo-calmodulin, and alphaCaM kinase II, which binds selectively to Ca(2+)-calmodulin. RC3 was found to decrease the affinity of calmodulin for Ca(2+), whereas CaM kinase II increases the calmodulin affinity for Ca(2+). Specifically, RC3 increases the rate of Ca(2+) dissociation from the C-terminal sites of calmodulin up to 60-fold while having little effect on the rate of Ca(2+) association. Conversely, CaM kinase II decreases the rates of dissociation of Ca(2+) from both lobes of calmodulin and autophosphorylation of CaM kinase II at Thr(286) induces a further decrease in the rates of Ca(2+) dissociation. RC3 dampens the effects of CaM kinase II on Ca(2+) dissociation by increasing the rate of dissociation from the C-terminal lobe of calmodulin when in the presence of CaM kinase II. This effect is not seen with phosphorylated CaM kinase II. The results are interpreted according to a kinetic scheme in which there are competing pathways for dissociation of the Ca(2+)-calmodulin target complex. This work indicates that the Ca(2+) binding properties of calmodulin are highly regulated and reveals a role for RC3 in accelerating the dissociation of Ca(2+)-calmodulin target complexes at the end of a Ca(2+) signal.

Download full-text PDF

Source
http://dx.doi.org/10.1074/jbc.M405352200DOI Listing

Publication Analysis

Top Keywords

cam kinase
24
affinity calmodulin
12
ca2+
12
affinity ca2+
12
ca2+ dissociation
12
calmodulin
11
kinase
8
ca2+ binding
8
proteins bind
8
calmodulin ca2+
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!