Motivation: Sequencing errors may bias the gene expression measurements made by Serial Analysis of Gene Expression (SAGE). They may introduce non-existent tags at low abundance and decrease the real abundance of other tags. These effects are increased in the longer tags generated in LongSAGE libraries. Current sequencing technology generates quite accurate estimates of sequencing error rates. Here we make use of the sequence neighborhood of SAGE tags and error estimates from the base-calling software to correct for such errors.
Results: We introduce a statistical model for the propagation of sequencing errors in SAGE and suggest an Expectation-Maximization (EM) algorithm to correct for them given observed sequences in a library and base-calling error estimates. We tested our method using simulated and experimental SAGE libraries. When comparing SAGE libraries, we found that sequencing errors can introduce considerable bias. High abundance tags may be falsely called as significantly differentially expressed, especially when comparing libraries with different levels of sequencing errors and/or of different size. Truly, differentially expressed tags have decreased significance as 'true'-tag counts are generally underestimated. This may alter if tags near the threshold of differential expression are called significant. Moreover, the number of different transcripts present in a library is overestimated as false tags are introduced at low abundance. Our correction method adjusts the tag counts to be closer to the true counts and is able to partly correct for biases introduced by sequencing errors.
Availability: An implementation using R is distributed as an R package. An online version is available at http://tagcalling.mbgproject.org
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1093/bioinformatics/bth924 | DOI Listing |
A high security physical layer encryption scheme for dual-mode orthogonal frequency division multiplexing with index modulation (DM-OFDM-IM) in magnetic induction communication is proposed. The scheme utilizes DM-OFDM-IM, where subcarriers within each subblock are divided into two groups, each modulated by distinct signal constellations. DM-OFDM-IM leverages the sequential information from the modulated constellation to transmit extra information, leading to a substantial enhancement in spectral efficiency.
View Article and Find Full Text PDFBMC Bioinformatics
January 2025
Auburn University, Auburn, AL, 36849, USA.
Background: Pacific Biosciences (PacBio) circular consensus sequencing (CCS), also known as high fidelity (HiFi) technology, has revolutionized modern genomics by producing long (10 + kb) and highly accurate reads. This is achieved by sequencing circularized DNA molecules multiple times and combining them into a consensus sequence. Currently, the accuracy and quality value estimation provided by HiFi technology are more than sufficient for applications such as genome assembly and germline variant calling.
View Article and Find Full Text PDFPediatr Res
January 2025
Department of Neurology, Children's Hospital Affiliated to Capital Institute of Pediatrics, Beijing, China.
Background: CblC type methylmalonic aciduria (cblC disease) is the most common inborn error of vitamin B12 metabolism and due to mutations in the MMACHC gene. The earlier the diagnosis, the better the prognosis. Therefore, convenient and inexpensive detection method is needed.
View Article and Find Full Text PDFNature
January 2025
Department of Brain and Cognitive Sciences and McGovern Institute, MIT, Cambridge, MA, USA.
Hippocampal circuits in the brain enable two distinct cognitive functions: the construction of spatial maps for navigation, and the storage of sequential episodic memories. Although there have been advances in modelling spatial representations in the hippocampus, we lack good models of its role in episodic memory. Here we present a neocortical-entorhinal-hippocampal network model that implements a high-capacity general associative memory, spatial memory and episodic memory.
View Article and Find Full Text PDFTunis Med
January 2025
University Hassan II of Casablanca, Faculty of medicine and pharmacy of Casablanca, Abderrahim HAROUCHI Mother-child hospital, Pediatric Anesthesiology and Intensive Care Unit, Laboratory of clinical immunology, inflammation and allergy (LICIA), Casablanca, Morocco.
Introduction: Pediatric sepsis remains a leading cause of morbidity and mortality in Africa. Nearly half of pediatric sepsis deaths occur in previously healthy children. The role of inborn errors of immunity (IEI) in susceptibility to sepsis is yet to be identified and their prevalence amongst previously healthy children admitted to the pediatric intensive care unit (PICU) is unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!