A modified quantitative EMSA and its application in the study of RNA--protein interactions.

J Biochem Biophys Methods

Health Science Center, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai Research Center of Biotechnology, 500 Caobao Road, Shanghai 200233, PR China.

Published: August 2004

Electrophoretic mobility shift assay (EMSA) is used to detect the complex of protein and nonradioisotope-labeled probe qualitatively. In this paper, we describe a modified quantitative EMSA, which uses biotin-labeled RNA in the complex formation. The RNA-protein complex is separated by agarose gel electrophoresis and capillary transferred to a positively charged nylon membrane. It is then detected through a secondary detection system using 5-bromo-4-chloro-3-indolyl phosphate (BCIP)-nitroblue tetrazolium (NBT) as the colorimetric precipitating substrate. After scanning and quantification by an image analysis program, ImageQuant, it was observed that the optical density of the bands was proportional to the decadic logarithm value of standard RNA quantities in the tested range. By using the standard curve of the optical densities plotted against the logarithm values of RNA quantities in the linear range, we can calculate RNA quantities according to the optical density of the band and make a quantitative analysis of EMSA. This method was applied successfully in the study of the interactions between the AU-rich element (ARE) and HuR, which is one of the human members of the (embryonic lethal abnormal vision) ELAV family. The results reveal that the biotin-labeled AUFL transcripts in the RNA-protein complex can be detected quantitatively, while maintaining the biological features of its binding ability to the HuR protein. By this method, it is possible to conduct qualitative and quantitative analyses of the EMSA in the study of RNA-protein interactions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jbbm.2004.03.008DOI Listing

Publication Analysis

Top Keywords

rna quantities
12
modified quantitative
8
quantitative emsa
8
rna-protein complex
8
optical density
8
emsa
5
emsa application
4
application study
4
study rna--protein
4
rna--protein interactions
4

Similar Publications

Lung cancer is the primary cause of cancer-related deaths. Most patients are typically diagnosed at advanced stages. Low-dose computed tomography (LDCT) has been proven to reduce lung cancer mortality, but screening programs using LDCT are associated with a high number of false positives and unnecessary thoracotomies.

View Article and Find Full Text PDF

In the year 2019, a highly virulent coronavirus named severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged, precipitating the outbreak of the illness known as coronavirus disease 2019 (COVID-19). The commonly employed reverse transcription polymerase chain reaction (RT-qPCR) methodology serves to estimate the viral load in each patient's sample by employing a standard curve. However, it is imperative to recognize that this technique exhibits limitations with respect to clinical diagnosis and therapeutic applications, since an advancement of the conventional polymerase chain reaction methods, digital polymerase chain reaction (digital PCR or DDPCR), enables the direct quantification and clonal amplification of nucleic acid strands.

View Article and Find Full Text PDF

Construction of Promoter Elements for Strong, Moderate, and Weak Gene Expression in .

Genes (Basel)

December 2024

Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilova Str., Moscow 119334, Russia.

Background/objectives: Transcriptional promoters play an essential role in regulating protein expression. Promoters with weak activity generally lead to low levels of expression, resulting in fewer proteins being produced. At the same time, strong promoters are commonly used in studies using transgenic organisms as model systems.

View Article and Find Full Text PDF

Skeletal muscle atrophy, manifested by a reduction in muscle size and quantity, is primarily attributed to excessive protein catabolism. FAM129B, an antioxidant protein, has been previously implicated in muscle growth and development in cattle. Aim of this study is to elucidate the role of FAM129B in muscle atrophy.

View Article and Find Full Text PDF

Background: Multiplex genetic testing is recommended when treating nonsmall cell lung cancer. A certain percentage of test failures in RNA assays owing to poor surgical specimen quality have been documented, and fixation failure is a possible cause. At our institution, sheet-like fixation is performed to reduce fixation time.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!