Kinetic characterization of novel NR2B antagonists using fluorescence detection of calcium flux.

J Neurosci Methods

Department of Neurology, Merck Research Laboratories, WP26A-2000 Sumneytown Pike, West Point, PA 19454, USA.

Published: August 2004

To facilitate the discovery of novel N-methyl-d-aspartate (NMDA) receptor antagonists, we have developed a high-throughput functional assay based on fluorescence detection of free intracellular calcium concentrations. Mouse fibroblast L(tk-) cells expressing human NR1a/NR2B NMDA receptors were plated in 96-well plates and loaded with fluorescence calcium indicator fluo-3 AM. NR2B antagonists were added after stimulation of NMDA receptors with 10 microM glutamate and 10 microM glycine. Changes in fluorescence after the addition of the antagonists were fitted by a single exponential equation providing k(obs). The concentration dependence of k(obs) was linear for all NR2B antagonists at concentrations where k(obs) < 0.2 s(-1). The values of k(obs) for six structurally distinct NR2B antagonists were in the range of 1.1 to 7.5 x 10(5) M(-1)s(-1). These values were several orders of magnitude slower than that obtained for diffusion limited Mg(2+) channel block. The rate constants k(off) provided the values of t(1/2) for dissociation of NR2B antagonists in the range of 1.8 min for ifenprodil to 240 min for the slowest novel antagonist. The IC(50) values obtained from the end-point fluorescence measurements agree with K(d) values calculated from kinetic measurements. All kinetic constants, obtained using our fluorescence method, correlate well with data measured by voltage clamp.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jneumeth.2004.02.034DOI Listing

Publication Analysis

Top Keywords

nr2b antagonists
20
fluorescence detection
8
nmda receptors
8
antagonists range
8
antagonists
7
fluorescence
6
nr2b
5
values
5
kinetic characterization
4
characterization novel
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!