Chlorhexidine (CHX) is a bis-bis-guanide with anphipatic and antiseptic properties and is largely used in dentistry, mainly for management of periodontal problems and in oral pre-operatory procedures. The present study concerns the effect of CHX on lipid peroxidation, mitochondrial permeability transition (MPT), and the interaction of CHX with ferritin (HoSF). CHX (100 microM) increased iron release from HoSF by approximately 13-fold when compared to control values. CHX also increased iron-dependent lipid peroxidation. MPT induced by CHX was protected by ethylene glycol-bis(beta-aminoethyl-ether)-N,N,N',N'-tetraacetic acid (EGTA), dithiothreitol (DTT), and cyclosporin A (CsA), showing a Ca2+-dependent effect, in which oxidation of thiol groups is involved, as well as the involvement of the transmembrane proteinaceous pore. BHT, catalase or o-phenanthroline did not protect MPT induced by CHX. This suggests that a ROS-independent mechanism is involved in the induction of MPT.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2004.02.013DOI Listing

Publication Analysis

Top Keywords

lipid peroxidation
12
peroxidation mitochondrial
8
mitochondrial permeability
8
permeability transition
8
mpt induced
8
induced chx
8
chx
7
data biological
4
biological effects
4
effects chlorhexidine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!