Characterization of a domoic acid binding site from Pacific razor clam.

Aquat Toxicol

NOAA Fisheries, Northwest Fisheries Science Center, Marine Biotoxin Program, 2725 Montlake Blvd. E., Seattle, WA 98112, USA.

Published: August 2004

The Pacific razor clam, Siliqua patula, is known to retain domoic acid, a water-soluble glutamate receptor agonist produced by diatoms of the genus Pseudo-nitzschia. The mechanism by which razor clams tolerate high levels of the toxin, domoic acid, in their tissues while still retaining normal nerve function is unknown. In our study, a domoic acid binding site was solubilized from razor clam siphon using a combination of Triton X-100 and digitonin. In a Scatchard analysis using [3H]kainic acid, the partially-purified membrane showed two distinct receptor sites, a high affinity, low capacity site with a KD (mean +/- S.E.) of 28 +/- 9.4 nM and a maximal binding capacity of 12 +/- 3.8 pmol/mg protein and a low affinity, high capacity site with a mM affinity for radiolabeled kainic acid, the latter site which was lost upon solubilization. Competition experiments showed that the rank order potency for competitive ligands in displacing [3H]kainate binding from the membrane-bound receptors was quisqualate > ibotenate > iodowillardiine = AMPA = fluorowillardiine > domoate > kainate > L-glutamate. At high micromolar concentrations, NBQX, NMDA and ATPA showed little or no ability to displace [3H]kainate. In contrast, Scatchard analysis using [3H]glutamate showed linearity, indicating the presence of a single binding site with a KD and Bmax of 500 +/- 50 nM and 14 +/- 0.8 pmol/mg protein, respectively. These results suggest that razor clam siphon contains both a high and low affinity receptor site for kainic acid and may contain more than one subtype of glutamate receptor, thereby allowing the clam to function normally in a marine environment that often contains high concentrations of domoic acid.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.aquatox.2004.04.012DOI Listing

Publication Analysis

Top Keywords

domoic acid
20
razor clam
16
binding site
12
acid
8
acid binding
8
pacific razor
8
glutamate receptor
8
clam siphon
8
scatchard analysis
8
capacity site
8

Similar Publications

Life Course Considerations in Environmental Health: Developmental Neurotoxicity of Domoic Acid at Doses Below Acute Effect Levels in Adult Humans.

Birth Defects Res

December 2024

Office of Environmental Health Hazard Assessment, California Environmental Protection Agency, Sacramento, California, USA.

Background: Current US federal action levels for domoic acid (DA) in seafood are based on acute toxicity observed in exposed adult humans. Life course considerations have not been incorporated. The potential for developmental neurotoxicity (DNT) at permissible DA levels has previously been noted, but not methodically assessed.

View Article and Find Full Text PDF

The benthic pennate diatom Nitzschia navis-varingica, known for producing domoic acid (DA) and its isomers, is widely distributed in the Western Pacific (WP) region. To investigate the genetic differentiation and gene flow patterns among the populations in the WP, the genetic diversity of 354 strains of N. navis-varingica was analysed using two nuclear-encoded rDNA loci: the large subunit rDNA (LSU rDNA) and the internal transcribed spacer 2 (ITS2).

View Article and Find Full Text PDF

Perturbations in a pelagic food web during the NE pacific large marine heatwave and persistent harmful diatom blooms.

Harmful Algae

December 2024

Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 110 McAllister Way, Santa Cruz, CA 95060, USA.

Unprecedented warm ocean conditions, driven by the Large Marine Heatwave (LMH) and the 2015-16 El Niño in the Northeast Pacific favored pervasive toxigenic Pseudo-nitzschia spp. blooms that caused widespread ecological impacts, but little is known about the magnitude to which marine food webs were altered. Here, we assessed the trophic transfer of domoic acid (DA; a neurotoxin) and changes in trophic position from multiple key species during the peak of the LMH and El Niño in 2015 in comparison with 2018, a reference non-anomalous warm year.

View Article and Find Full Text PDF

In this review, we toxicologically assessed the naturally occurring toxin domoic acid. We used the One Health approach because the impact of domoic acid is potentiated by climate change and water pollution on one side, and reflected in animal health, food security, human diet, and human health on the other. In a changing environment, algal blooms are more frequent.

View Article and Find Full Text PDF

Marine Algal Toxins and Public Health: Insights from Shellfish and Fish, the Main Biological Vectors.

Mar Drugs

November 2024

Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.

Article Synopsis
  • Harmful algal blooms (HABs) produce toxins that can cause serious illnesses in humans, including five main types of shellfish poisoning: DSP, PSP, ASP, NSP, and CP.
  • These toxins primarily enter the human body through the consumption of contaminated fish and shellfish, and the prevalence of such toxin-related diseases is increasing globally.
  • The paper reviews the toxic effects of these HABs on aquatic life and humans, aiming to better understand the mechanisms behind these toxins to reduce the health risks they pose.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!