We describe a new discrete microprocessor-controlled analyzer, the AN2000, which fully automates fluorometric immunoassays by using a magnetic separation of the solid phase and an alkaline phosphatase label. It can operate in random-access or batch mode with a dwell time typically less than 20 min. The analysis rate is 75 samples per hour and the system can hold refrigerated reagents for as many as 20 different analytes. The substrate and wash buffer are common to all analytes. The system can hold as many as 80 samples at once. The operator can select from the menu-driven operator interface any combination of the available analytes to be run for each sample, using either the touch screen or the keyboard. Results are calculated from a stored calibration curve that is stable for greater than or equal to 1 month. The AN2000 is capable of automating most assay formats because the available timings, volumes, incubations, and wash cycles can be used in any combination.

Download full-text PDF

Source

Publication Analysis

Top Keywords

system hold
8
anagen system
4
system automated
4
automated fluorometric
4
fluorometric immunoassay
4
immunoassay describe
4
describe discrete
4
discrete microprocessor-controlled
4
microprocessor-controlled analyzer
4
analyzer an2000
4

Similar Publications

En masse evaluation of RNA guides (EMERGe) for ADARs.

Methods Enzymol

January 2025

Department of Chemistry, University of California, Davis, 1 Shields Ave, Davis, CA, United States. Electronic address:

Adenosine Deaminases Acting on RNA (ADARs) convert adenosine to inosine in duplex RNA, and through the delivery of guide RNAs, can be directed to edit specific adenosine sites. As ADARs are endogenously expressed in humans, their editing capacities hold therapeutic potential and allow us to target disease-relevant sequences in RNA through the rationale design of guide RNAs. However, current design principles are not suitable for difficult-to-edit target sites, posing challenges to unlocking the full therapeutic potential of this approach.

View Article and Find Full Text PDF

Ultrasensitive point-of-care multiplex diagnosis for influenza virus based robust quantum dot microsphere-lateral flow immunoassay.

Biosens Bioelectron

January 2025

Key Lab for Special Functional Materials of Ministry of Education, and School of Nanoscience and Materials Engineering, Henan University, 475004, Kaifeng, China. Electronic address:

Influenza A virus (IAV) and influenza B virus (IBV) with similar symptoms of infection caused a serious disease burden and economic losses in annual epidemic season, so it is important to quickly and accurately detect and distinguish between IAV and IBV during influenza season. Herein, the quantum dot microspheres (QDMS) were synthesized and applied to lateral flow immunoassays (LFIA), and a point-of-care (POC) biosensor that can discriminately and simultaneously diagnose IAV and IBV within 10 min was established. A double-sandwich QDMS nanotags was synthesized by immobilizing hydrophobic quantum dots (QDs) with chemical bonding method on a silica sphere template with an outer silica shell protection showed excellent stability and high fluorescence.

View Article and Find Full Text PDF

hESC-derived extracellular vesicles enriched with MFGE-8 and the GSH redox system act as senotherapeutics for neural stem cells in ischemic stroke.

Free Radic Biol Med

January 2025

Laboratory of Stem Cells and Tissue Regeneration, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, South Korea. Electronic address:

Human embryonic stem cells (hESCs) and their extracellular vesicles (EVs) hold significant potential for tissue repair and regeneration. Neural stem cells (NSCs) in the adult brain often acquire senescent phenotypes after ischemic injuries, releasing neurodegenerative senescence-associated secretory phenotype factors. In this study, we investigated the senotherapeutic effects of hESC-EVs on NSCs and confirmed their neuroprotective effects in neurons via rejuvenation of NSC secretions.

View Article and Find Full Text PDF

Molecular dynamics work on thermal conductivity of SiGe nanotubes.

J Mol Model

January 2025

School of Mechanics and Safety Engineering, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.

Context: SiGe nanotubes (SiGeNTs) hold significant promise for applications in nanosolar cells, optoelectronic systems, and interconnects, where thermal conductivity is critical to performance. This study investigates the effects of length, diameter, temperature, and axial strain on the thermal conductivity of armchair and zigzag SiGeNTs through molecular dynamics simulations. Results indicate that thermal conductivity increases with sample length due to ballistic heat transport and decreases with temperature as phonon scattering intensifies.

View Article and Find Full Text PDF

Linking higher amyloid beta 1-38 (Aβ(1-38)) levels to reduced Alzheimer's disease progression risk.

Alzheimers Dement

January 2025

Department of Psychiatry and Neuroscience, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.

Introduction: The beneficial effects of amyloid beta 1-38, or Aβ(1-38), on Alzheimer's disease (AD) progression in humans in vivo remain controversial. We investigated AD patients' cerebrospinal fluid (CSF) Aβ(1-38) and AD progression.

Methods: Cognitive function and diagnostic change were assessed annually for 3 years in 177 Aβ-positive participants with subjective cognitive decline (SCD), mild cognitive impairment (MCI), and dementia from the German Center for Neurodegenerative Diseases (DZNE) longitudinal cognitive impairment and dementia study (DELCODE) cohort using the Mini-Mental State Examination (MMSE), Preclinical Alzheimer's Cognitive Composite (PACC), Clinical Dementia Rating (CDR), and National Institute of Neurological and Communicative Disorders and Stroke-Alzheimer's Disease and Related Disorders Association (NINCDS-ADRDA) criteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!