The purpose of this study is to develop a model that quantifies in three dimensions changes in bladder shape due to changes in bladder and/or rectal volume. The new technique enables us to predict changes in bladder shape over a short period of time, based on known urinary inflow. Shortly prior to the treatment, the patient will be scanned using a cone beam CT scanner (x-ray volume imager) that is integrated with the linear accelerator. After (automated) delineation of the bladder, the model will be used to predict the short-term shape changes of the bladder for the time interval between image acquisition and dose delivery. The model was developed using multiple daily CT scans of the pelvic area of 19 patients. For each patient, the rigid bony structure in follow-up scans was matched to that of the planning CT scan, and the outer bladder and rectal wall were delineated. Each bladder wall was subdivided in 2500 domains. A fixed reference point inside the bladder was used to calculate for each bladder structure a "Mercator-like" 2D scalar map (similar to a height map of the globe), containing the distances from this reference point to each domain on the bladder wall. Subsequently, for all bladder shapes of a patient and for all domains on the wall individually, the distance to the reference point was fitted by a linear function of both bladder and rectal volume. The model uses an existing bladder structure to create a new structure via expansion (or contraction), until the expressed volume is reached. To evaluate the predictive power of the model, the jack-knife method was used. The errors in the fitting procedure depended on the part of the bladder and range from 0 to 0.5 cm (0.2 cm on average). It was found that a volume increase of 150 cc can lead to a displacement up to about 2.5 cm of the cranial part of the bladder. With the model, the uncertainty in the position of the bladder wall can be reduced down to a maximum value of about 0.5 cm in case the bladder volume increase is known. Furthermore, it was found that a change in rectal filling causes a shift of the bladder, while its shape is hardly influenced. In conclusion, we developed a model that describes the bladder shape and position as a function of the bladder volume and the rectal filling. The model accurately describes the complex shape of the bladder as it works on each domain of the bladder separately.

Download full-text PDF

Source
http://dx.doi.org/10.1118/1.1738961DOI Listing

Publication Analysis

Top Keywords

bladder
24
changes bladder
20
bladder shape
16
bladder rectal
12
rectal filling
12
bladder wall
12
reference point
12
model
9
bladder shapes
8
shape changes
8

Similar Publications

Purpose: This study aims to elucidate the role of pituitary adenylate cyclase-activating polypeptide (PACAP) in Hunner-type Interstitial Cystitis (HIC) and evaluate its potential as a therapeutic target.

Methods: Bladder tissue samples were obtained from HIC patients and normal bladder tissue from bladder cancer patients. PACAP expression was assessed through immunohistochemistry.

View Article and Find Full Text PDF

Including sensor information in medical interventions aims to support surgeons to decide on subsequent action steps by characterizing tissue intraoperatively. With bladder cancer, an important issue is tumor recurrence because of failure to remove the entire tumor. Impedance measurements can help to classify bladder tissue and give the surgeons an indication on how much tissue to remove.

View Article and Find Full Text PDF

Long-term efficacy of Mirabegron-anticholinergic combination in paediatric neurogenic bladder.

J Pediatr Urol

January 2025

Department of Women and Children's Health, School of Life Course Sciences, Kings College London, London, UK; Children's Bladder Service, Evelina London Children's Hospital, Westminster Bridge Road, London, SE1 7EH, UK.

Introduction: The Mirabegron-anticholinergic (MAC) combination has proven effective as a step-up strategy in managing paediatric neurogenic bladder following anticholinergic medication and botulinum toxin (BTX) therapy. This study assesses the long-term efficacy of MAC in children with neurogenic bladder.

Patients And Methods: A retrospective chart review was conducted from 2015 to 2023, including consecutive paediatric patients receiving Mirabegron (25/50 mg) with an anticholinergic agent (solifenacin 16, tolterodine 7, oxybutynin 7, trospium 1).

View Article and Find Full Text PDF

Introduction: Bladder and bowel dysfunction (BBD) is a commonly experienced disorder that can cause adverse physical and psychological impacts on a child and their family.

Objective: This study aimed to assess the yield of clinically significant sensitive genitourinary (GU) examination findings and whether findings influence BBD management.

Methods: A cross-sectional, descriptive, correlational research design was used to study the relationship between GU examination findings and management of pediatric BBD.

View Article and Find Full Text PDF

Background: Continent catheterizable channels (CCC) are a mainstay for reconstruction in patients with neurogenic bladders. Common complications include false passage, channel stenosis/difficult catheterization, channel incontinence, and stomal stenosis. This may result in the need for surgical revision or replacement.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!