Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The completion of the human genome project, the evolution of transcriptional profiling and the emergence of proteomics have focused attention on these areas in the pathophysiology and therapy of cancer. The role of lysophospholipids as potential mediators in cancer pathophysiology, screening and management has taken a major leap forward with the recent cloning of several enzymes involved in the metabolism of lysophospholipids. Lysophospholipids, although small molecules, contain a high "informational" content. Differences include the nature of the phosphate head group, the regiochemistry of the fatty acyl chain on the glyceryl backbone, the presence of ether versus ester linkages to the backbone, and the length and saturation of the fatty acyl or alkyl chain. This informational content is sufficient to result in a marked structure function activity relationship at their cognate receptors. Thus the emerging discipline of "functional lipidomics" is likely to prove as important as genomics and proteomics in terms of early diagnosis, prognosis, and therapy. Lysophospholipid levels are elevated in vivo in a number of pathophysiological states including ascitic fluid from ovarian cancer patients indicating a role in the pathophysiology of this devastating disease. Although controversial, levels of specific lysophospholipids may be altered in the blood of cancer patients providing a potential mechanism for early diagnosis. Several of the enzymes involved in the metabolism of lysophospholipids are aberrant in ovarian and other cancers. Further, the enzymes are active in the interstitial space, rendering them readily accessible to the effects of inhibitors including antibodies, proteins, and small molecules. In support of a role for lysophospholipids in the pathophysiology of cancer, expression of receptors for lysophospholipids is also aberrant in cancer cells from multiple different lineages. All of the cell surface receptors for lysophospholipids belong to the G protein coupled receptor family. As over 40% of all drugs in current use target this family of receptors, lysophospholipid receptors are highly "druggable." Indeed, a number of highly specific agonists and antagonists of lysophospholipid receptors have been identified. A number are in preclinical evaluation as therapeutics. We look forward to the next several years when the role of lysophospholipids in physiology and the pathophysiology and management of cancer and other diseases are fully elucidated.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.20113 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!