Purpose: Blepharophimosis-ptosis-epicanthus inversus syndrome (BPES) is a rare eye genetic disorder caused by mutations in the FOXL2 gene located at chromosome 3q23. The purpose of the present study was to carry out genetic analysis of BPES in a five-generation Indian family.

Methods: Peripheral blood samples were obtained from individuals for genomic DNA isolation. To determine the linkage of this family to the FOXL2 locus, haplotype analysis was carried out using microsatellite markers from the BPES candidate region. Five overlapping sets of primers were used to amplify the entire coding region of the FOXL2 gene for mutation detection. Allele-specific oligonucleotide hybridization (ASOH) analysis was carried out to determine segregation of the mutation in the family and to also determine if the mutation was present in 100 ethnically matched normal control chromosomes.

Results: Pedigree analysis suggested that BPES segregated in this family as an autosomal dominant trait. Cytogenetic analysis in one patient did not reveal any rearrangement. Haplotype analysis suggested that this family was linked to the FOXL2 locus on chromosome 3q23. DNA sequence analysis showed that the BPES phenotype in this family was caused by a novel missense mutation, c.881A->G (p.Y215C).

Conclusions: This study reports for the first time a novel missense mutation in a five-generation Indian family with BPES. A review of the literature showed that the total number of mutations in the FOXL2 gene described to date is 42.

Download full-text PDF

Source

Publication Analysis

Top Keywords

novel missense
12
missense mutation
12
foxl2 gene
12
genetic analysis
8
indian family
8
family bpes
8
mutations foxl2
8
chromosome 3q23
8
analysis bpes
8
five-generation indian
8

Similar Publications

A novel compound heterozygous mutation in the DYNC2H1 gene in a Chinese family with Jeune syndrome.

Hereditas

January 2025

Key Laboratory of Reproductive Health Diseases Research and Translation of Ministry of Education & Key Laboratory of Human Reproductive Medicine and Genetic Research of Hainan Provincie & Hainan Provincial Clinical Research Center for Thalassemia, The First Affiliated Hospital of Hainan Medical University, Hainan Medical University, Haikou, Hainan, 571101, China.

Background: The dynein cytoplasmic two heavy chain 1 (DYNC2H1) gene encodes a cytoplasmic dynein subunit. Cytoplasmic dyneins transport cargo towards the minus end of microtubules and are thus termed the "retrograde" cellular motor. Mutations in DYNC2H1 are the main causative mutations of short rib-thoracic dysplasia syndrome type III with or without polydactyly (SRTD3).

View Article and Find Full Text PDF

Objectives: COVID-19 and systemic sclerosis (SSc) share multiple similarities in their clinical manifestations, alterations in immune response, and therapeutic options. These resemblances have also been identified in other immune-mediated inflammatory diseases where a common genetic component has been found. Thus, we decided to evaluate for the first time this shared genetic architecture with SSc.

View Article and Find Full Text PDF

Background: Whole exome sequencing (WES) technology has been increasingly used for the etiological diagnosis of fetuses with ultrasound anomalies. In this article, we report a novel deletion compound combined with a causative variant in gene leading to short-rib thoracic dysplasia 7 (SRTD7) with or without polydactyly using WES.

Methods: This study involved a Chinese fetus with clinical features of skeletal dysplasia on ultrasound imaging, in whom chromosome abnormalities and copy number variants (CNVs) were detected by chromosomal microarray analysis (CMA), and sequence variants were detected by WES.

View Article and Find Full Text PDF

Background: Sensorineural hearing loss (SNHL) is a frequent manifestation of syndromic inherited retinal diseases (IRDs), exemplified by the very rare form of autosomal-dominant Leber congenital amaurosis with early onset deafness (LCAEOD; OMIM #617879). LCAEOD was first described in 2017 in four families segregating heterozygous missense mutations in TUBB4B, a gene encoding a β-tubulin isotype. To date, only eight more families with similar TUBB4B-associated sensorineural disease (SND) have been reported.

View Article and Find Full Text PDF

P21-activated kinase 2 (PAK2) is a serine/threonine kinase essential for a variety of cellular processes including signal transduction, cellular survival, proliferation, and migration. A recent report proposed monoallelic PAK2 variants cause Knobloch syndrome type 2 (KNO2)-a developmental disorder primarily characterized by ocular anomalies. Here, we identified a novel de novo heterozygous missense variant in PAK2, NM_002577.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!