Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study demonstrates that verapamil and a newly synthesized verapamil derivative, NMeOHI(2), behave as apoptogens in multidrug resistance protein 1 (MRP1)-expressing cells. When treated with either verapamil or NMeOHI(2), surprisingly, baby hamster kidney-21 (BHK) cells transfected with human MRP1 were killed. Because parental BHK cells were not, as well as cells expressing an inactive (K1333L) MRP1 mutant, this indicated that cell death involved functional MRP1 transporter. Cell death was identified as apoptosis by using annexin V-fluorescein labeling and was no longer observed in the presence of the caspase inhibitor Z-Val-Ala-Asp(OMe)-CH(2)F (Z-VAD-FMK). In vitro, both verapamil and its derivative inhibited leukotriene C4 transport by MRP1-enriched membrane vesicles in a competitive manner, with a K(i) of 48.6 microm for verapamil and 5.5 microm for NMeOHI(2,) and stimulated reduced glutathione (GSH) transport 3-fold and 9-fold, respectively. Treatment of MRP1-expressing cells with either verapamil or the derivative quickly depleted intracellular GSH content with a strong decrease occurring in the first hour of treatment, which preceded cell death beginning at 8-16 h. Furthermore, addition of GSH to the media efficiently prevented cell death. Therefore, verapamil and its derivative trigger apoptosis through stimulation of GSH extrusion mediated by MRP1. This new information on the mechanism of induced apoptosis of MDR cells may represent a novel approach in the selective treatment of MRP1-positive tumors.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1158/0008-5472.CAN-04-0143 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!